H+, Na+, K+, and Amino Acid Transport in Caterpillar and Larval Mosquito Alimentary Canal

作者: William R. Harvey , Bernard A. Okech

DOI: 10.1007/978-1-60327-229-2_6

关键词: Energy sourceElectrochemical gradientResting potentialSymporterMembraneBiological membraneAntiporterBotanyChemistryCrystallographyMembrane potential

摘要: Two principal strategies are used to energize membranes in living organisms, a Na+ strategy and voltage strategy. In the primary Na+/K+ ATPase imposes both K+ concentration gradients across cell with high outside inside cells. The gradient, Δ[Na+] is drive diverse secondary transporters. For example, many animal cells drives inwardly coupled H+ outwardly, mediated by Na+/H+ exchangers (NHEs). They provide means which metabolically produced acids ejected from mammalian [70]. electron transport system of prokaryotes or V-ATPases eukaryotes, impose ΔΨ, biological positive. ΔΨ (Na+ K+)/nH+ antiport that antiporters (NHAs). stoichiometry NHEs 1Na+ 1H+ so they independent membrane potential said be electroneutral. NHAs more than driven ion electrophoretic. operate opposite direction NHEs, moving nH+ outwardly. also Na+- K+-coupled nutrient amino acid uptake electrophoretic K+) symporters (NATs) [11]. eukaryotic sources plasma have classically been considered K+, Na+, other ionic diffusion potentials. Thus, potentials dominate resting action squid axon nerves. Only recently ΔΨs generated becoming recognized as energy source for transporters [35, 65, 90]. translocate outwardly leaving their partner anion (gegenion) behind. charge capacitance resulting transmembrane voltage, translocated H+s exchange numerous Na+s K+s bulk solution, transforming electrochemical gradient turn symport via NAT into Membrane energization accomplished five-phase consisting (1) solution cells, (2) solution/membrane interface, (3) membrane, (4) (5) [36, 49, 50].

参考文章(92)
John Orlowski, Sergio Grinstein, Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflügers Archiv: European Journal of Physiology. ,vol. 447, pp. 549- 565 ,(2004) , 10.1007/S00424-003-1110-3
Helmut Wieczorek, Michael G. Wolfersberger, Moira Cioffi, William R. Harvey, Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm midgut. Biochimica et Biophysica Acta. ,vol. 857, pp. 271- 281 ,(1986) , 10.1016/0005-2736(86)90356-1
Shulamit Cidon, Nathan Nelson, Properties of a novel ATPase enzyme in chromaffin granules Journal of Bioenergetics and Biomembranes. ,vol. 14, pp. 499- 512 ,(1982) , 10.1007/BF00743074
Brain J. Harvey, Jordi Ehrendeld, Regulation of intracellular sodium and pH by the electrogenic H+ pump in frog skin. Pflügers Archiv: European Journal of Physiology. ,vol. 406, pp. 362- 366 ,(1986) , 10.1007/BF00590937
I. T. Arkin, H. Xu, M. O. Jensen, E. Arbely, E. R. Bennett, K. J. Bowers, E. Chow, R. O. Dror, M. P. Eastwood, R. Flitman-Tene, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, Y. Shan, D. E. Shaw, Mechanism of Na+/H+ antiporting. Science. ,vol. 317, pp. 799- 803 ,(2007) , 10.1126/SCIENCE.1142824
Cecilia Hidalgo, LIPID-PROTEIN INTERACTIONS AND CALCIUM TRANSPORT IN SARCOPLASMIC RETICULUM Annals of the New York Academy of Sciences. ,vol. 402, pp. 561- 562 ,(1982) , 10.1111/J.1749-6632.1982.TB25776.X
Martin Voss, Olga Vitavska, Bernd Walz, Helmut Wieczorek, Otto Baumann, Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. Journal of Biological Chemistry. ,vol. 282, pp. 33735- 33742 ,(2007) , 10.1074/JBC.M703368200
Terry A. Krulwich, Arthur A. Guffanti, Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria. Journal of Bioenergetics and Biomembranes. ,vol. 24, pp. 587- 599 ,(1992) , 10.1007/BF00762351
J Ehrenfeld, F Garcia-Romeu, B J Harvey, Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. The Journal of Physiology. ,vol. 359, pp. 331- 355 ,(1985) , 10.1113/JPHYSIOL.1985.SP015588