Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors.

作者: A. Hauke , L.S. Selva Kumar , M.Y. Kim , J. Pegan , M. Khine

DOI: 10.1016/J.BIOS.2017.03.024

关键词: Footprint (electronics)PlanarAptamerSignalMiniaturizationElectrochemistryNanotechnologyElectrodeSurface finishMaterials science

摘要: Electrochemical sensing is moving to the forefront of point-of-care and wearable molecular technologies due ability miniaturize required equipment, a critical advantage over optical methods in this field. sensors that employ roughness increase their microscopic surface area offer strategy combatting loss signal associated with macroscopic upon miniaturization. A simple, low-cost method creating such has emerged development shrink-induced high electrodes. Building on approach, we demonstrate here greater than 12-fold enhancement electrochemically active conventional electrodes equivalent on-chip footprint areas. This two-fold improvement previous performance obtained via creation superwetting condition facilitated by dissolvable polymer coating. As test bed illustrate utility further show electrochemical aptamer-based exhibit exceptional strength (signal-to-noise) excellent gain (relative change target binding) when deployed these shrink Indeed, observed 330% observe for kanamycin sensor 2-fold seen planar gold

参考文章(15)
C. M. Gabardo, R. C. Adams-McGavin, O. M. Vanderfleet, L. Soleymani, Rapid prototyping of microfluidic devices with integrated wrinkled gold micro-/nano textured electrodes for electrochemical analysis Analyst. ,vol. 140, pp. 5781- 5788 ,(2015) , 10.1039/C5AN00774G
R. C. Salvarezza, C. A. Alonso, J. M. Vara, E. Albano, H. O. Mártin, A. J. Arvia, Monte Carlo simulation applicable to the growth of rough metal overlayers: Parametric relationships related to the electrochemical roughening. Physical Review B. ,vol. 41, pp. 12502- 12508 ,(1990) , 10.1103/PHYSREVB.41.12502
Amay J. Bandodkar, Joseph Wang, Non-invasive wearable electrochemical sensors: a review Trends in Biotechnology. ,vol. 32, pp. 363- 371 ,(2014) , 10.1016/J.TIBTECH.2014.04.005
Christine M. Gabardo, Yujie Zhu, Leyla Soleymani, Jose M. Moran-Mirabal, Bench‐Top Fabrication of Hierarchically Structured High‐Surface‐Area Electrodes Advanced Functional Materials. ,vol. 23, pp. 3030- 3039 ,(2013) , 10.1002/ADFM.201203220
Sanjay Sonney, Norman Shek, Jose M. Moran-Mirabal, Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes Biomicrofluidics. ,vol. 9, pp. 026501- 026501 ,(2015) , 10.1063/1.4918596
Danielle W. Kimmel, Gabriel LeBlanc, Mika E. Meschievitz, David E. Cliffel, Electrochemical Sensors and Biosensors Analytical Chemistry. ,vol. 84, pp. 685- 707 ,(2012) , 10.1021/AC202878Q
Jonathan D. Pegan, Adrienne Y. Ho, Mark Bachman, Michelle Khine, Flexible shrink-induced high surface area electrodes for electrochemiluminescent sensing. Lab on a Chip. ,vol. 13, pp. 4205- 4209 ,(2013) , 10.1039/C3LC50588J
Catrina G. Pheeney, Jacqueline K. Barton, DNA Electrochemistry with Tethered Methylene Blue Langmuir. ,vol. 28, pp. 7063- 7070 ,(2012) , 10.1021/LA300566X
Lauren R. Freschauf, Jolie McLane, Himanshu Sharma, Michelle Khine, Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics. PLOS ONE. ,vol. 7, ,(2012) , 10.1371/JOURNAL.PONE.0040987
Aaron A. Rowe, Erin A. Miller, Kevin W. Plaxco, Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Analytical Chemistry. ,vol. 82, pp. 7090- 7095 ,(2010) , 10.1021/AC101491D