Spallation of polycarbonate under plate impact loading

作者: S. J. Ye , H. W. Chai , X. H. Xiao , Y. Cai , X. H. Yao

DOI: 10.1063/1.5108965

关键词: Materials scienceVoid (astronomy)Drop (liquid)SpallSofteningSpallationComposite materialParticle velocityCoalescence (physics)Ultimate tensile strength

摘要: We investigate spallation of polycarbonate under plate impact loading. The Hugoniot equation state up to ∼ 1.3 GPa (corresponding a peak particle velocity 380 m / s) is obtained, and spall strength corresponding strain rates are determined at shock stresses 2.4 600 s). With increasing strength, the transition from strain-hardening softening states occurs as result heating; remains approximately constant, followed by rapid drop upon softening. Release/tensile melting higher velocities. Three-dimensional void configurations postmortem samples obtained via X-ray computerized tomography. small voids flat curved for low-speed shots but become ellipsoidal high-speed shots, their coalescence leads different shapes likely due damage mechanisms.We mechanisms.

参考文章(36)
B. Tanguy, J. Besson, R. Piques, A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test: Part I: experimental results Engineering Fracture Mechanics. ,vol. 72, pp. 49- 72 ,(2005) , 10.1016/J.ENGFRACMECH.2004.03.010
J. C. F. Millett, N. K. Bourne, Shock and release of polycarbonate under one-dimensional strain Journal of Materials Science. ,vol. 41, pp. 1683- 1690 ,(2006) , 10.1007/S10853-006-3951-6
Yubo Gao, Wei Zhang, Gang Wei, Yugang Ni, Wei Huang, Xuanming Cai, Nan Ye, A new approach for Hugoniot equation of state of polycarbonate Measurement. ,vol. 68, pp. 246- 256 ,(2015) , 10.1016/J.MEASUREMENT.2015.02.031
T. de Rességuier, M. Deleignies, Spallation of polycarbonate under laser-driven shocks Shock Waves. ,vol. 7, pp. 319- 324 ,(1997) , 10.1007/S001930050086
Kan Cao, Xinzhong Ma, Baoshan Zhang, Yang Wang, Yu Wang, None, Tensile behavior of polycarbonate over a wide range of strain rates Materials Science and Engineering: A. ,vol. 527, pp. 4056- 4061 ,(2010) , 10.1016/J.MSEA.2010.03.088
A. M. Rajendran, J. L. Kroupa, Impact damage model for ceramic materials Journal of Applied Physics. ,vol. 66, pp. 3560- 3565 ,(1989) , 10.1063/1.344085
J. Bontaz-Carion, Y.-P. Pellegrini, X‐ray Microtomography Analysis of Dynamic Damage in Tantalum Advanced Engineering Materials. ,vol. 8, pp. 480- 486 ,(2006) , 10.1002/ADEM.200600058
Dogˇa Gürsoy, Francesco De Carlo, Xianghui Xiao, Chris Jacobsen, TomoPy: a framework for the analysis of synchrotron tomographic data Journal of Synchrotron Radiation. ,vol. 21, pp. 1188- 1193 ,(2014) , 10.1107/S1600577514013939
N. J. Petch, The ductile-brittle transition in the fracture of α-iron: I Philosophical Magazine. ,vol. 3, pp. 1089- 1097 ,(1958) , 10.1080/14786435808237038