Band-gap blue shift by impurity-free vacancy diffusion in 1.5-μm-strained InGaAsP/InP multiple quantum-well laser structure

作者: N. Cao , B. B. Elenkrig , J. G. Simmons , D. A. Thompson , N. Puetz

DOI: 10.1063/1.118213

关键词: BlueshiftOptoelectronicsAnnealing (metallurgy)LaserWaferVacancy defectBand gapGallium arsenidePhotoluminescenceMaterials science

摘要: The effects of defect-enhanced, impurity-free, quantum-well (QW)-barrier compositional intermixing caused by the SiO2 cap annealing at 750 °C a 1.5-μm InGaAsP/InP multiple (MQW) laser structure have been studied photoluminescence (PL). A substantial band-gap blue shift, as much 112 nm (∼66 meV), was found in and value shift can be controlled anneal time. amount does not depend on thickness layer. Ridge-waveguide lasers were fabricated different areas wafer, with without during 60 s anneal. lasing wavelength produced has 78 over that cap.

参考文章(12)
K. Sato, I. Kotaka, K. Wakita, Y. Kondo, M. Yamamoto, Strained-InGaAsP MQW electroabsorption modulator integrated DFB laser Electronics Letters. ,vol. 29, pp. 1087- 1089 ,(1993) , 10.1049/EL:19930726
A. Ramdane, P. Krauz, E.V.K. Rao, A. Hamoudi, A. Ougazzaden, D. Robein, A. Gloukhian, M. Carre, Monolithic integration of InGaAsP-InP strained-layer distributed feedback laser and external modulator by selective quantum-well interdiffusion IEEE Photonics Technology Letters. ,vol. 7, pp. 1016- 1018 ,(1995) , 10.1109/68.414687
M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, A. Takai, Novel structure MQW electroabsorption modulator/DFB-laser integrated device fabricated by selective area MOCVD growth Electronics Letters. ,vol. 27, pp. 2138- 2140 ,(1991) , 10.1049/EL:19911324
J. Beauvais, S.G. Ayling, J.H. Marsh, Low-loss extended cavity lasers by dielectric cap disordering with a novel masking technique IEEE Photonics Technology Letters. ,vol. 5, pp. 372- 373 ,(1993) , 10.1109/68.212668
P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, I. V. Mitchell, Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing Journal of Applied Physics. ,vol. 78, pp. 2367- 2371 ,(1995) , 10.1063/1.360157
S. Bürkner, M. Maier, E. C. Larkins, W. Rothemund, E. P. O’reilly, J. D. Ralston, Process parameter dependence of impurity-free interdiffusion in GaAs/Al x Ga 1–x As and In y Ga 1–y As/GaAs multiple quantum wells Journal of Electronic Materials. ,vol. 24, pp. 805- 812 ,(1995) , 10.1007/BF02653328
S Charbonneau, PJ Poole, PG Piva, GC Aers, Emil S Koteles, M Fallahi, J‐J He, JP McCaffrey, Mu Buchanan, M Dion, RD Goldberg, IV Mitchell, None, Quantum-well intermixing for optoelectronic integration using high energy ion implantation Journal of Applied Physics. ,vol. 78, pp. 3697- 3705 ,(1995) , 10.1063/1.359948
B. B. Elenkrig, D. A. Thompson, J. G. Simmons, D. M. Bruce, Yu. Si, Jie Zhao, J. D. Evans, I. M. Templeton, Experimental study of implantation‐induced disordering in InGaAsP strained multiple‐quantum‐well heterostructures Applied Physics Letters. ,vol. 65, pp. 1239- 1241 ,(1994) , 10.1063/1.112082
D. G. Deppe, L. J. Guido, N. Holonyak, K. C. Hsieh, R. D. Burnham, R. L. Thornton, T. L. Paoli, Stripe‐geometry quantum well heterostructure AlxGa1−xAs‐GaAs lasers defined by defect diffusion Applied Physics Letters. ,vol. 49, pp. 510- 512 ,(1986) , 10.1063/1.97133
R.L. Thornton, W.J. Mosby, T.L. Paoli, Monolithic waveguide coupled cavity lasers and modulators fabricated by impurity induced disordering Journal of Lightwave Technology. ,vol. 6, pp. 786- 792 ,(1988) , 10.1109/50.4067