Pathological circumstances impair the ability of dark neurons to undergo spontaneous recovery

作者: Ferenc Gallyas , Balázs Gasz , András Szigeti , Mária Mázló

DOI: 10.1016/J.BRAINRES.2006.06.078

关键词: BiophysicsAmilorideEnzyme inhibitorBiochemistryPinacidilChemistryPotassium channelVeratridineNeuronTetraethylammonium chlorideSodium channel

摘要: The effects of dehydrating drugs (furosemide, mannitol and glycerine), potassium channel modulators (tetraethylammonium chloride, 5-hydroxydecanoic acid Na salt, minoxidil pinacidil), sodium (veratridine, brevetoxin-9, 5-(N,N-dimethyl)amiloride benzamil–HCl) mitochondrial enzyme inhibitors (3-nitropropionic acid, 2,4-dinitrophenol chloramphenicol) on the fate electrically produced “dark” hippocampal dentate granule neurons were investigated. All but one (chloramphenicol) these bioactive reagents substantially retarded recovery increased death rate such neurons. As concerns ion modulators, are considered to be consequences fact that relatively large volumes (more than half original cell volume) cytoplasmic fluid (water molecules, inorganic ions metabolites) leave affected cells through passive pores within a few minutes. appear indicate restoration volume (recovery) demands metabolic (enzyme-mediated) energy. features support our previous assumption exogenous circumstances existing acutely after formation in neurological diseases decide whether they will recover or die.

参考文章(18)
Mária Mázló, Balázs Gasz, András Szigeti, Andrea Zsombok, Ferenc Gallyas, Debris of "dark" (compacted) neurones are removed from an otherwise undamaged environment mainly by astrocytes via blood vessels Journal of Neurocytology. ,vol. 33, pp. 557- 567 ,(2004) , 10.1007/S11068-004-0517-5
Ferenc Gallyas, József Pál, Orsolya Farkas, Tamás Dóczi, None, The fate of axons subjected to traumatic ultrastructural (neurofilament) compaction: an electron-microscopic study. Acta Neuropathologica. ,vol. 111, pp. 229- 237 ,(2006) , 10.1007/S00401-006-0034-3
C. K. PETITO, W. A. PULSINELLI, Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. Journal of Neuropathology and Experimental Neurology. ,vol. 43, pp. 141- 153 ,(1984) , 10.1097/00005072-198403000-00004
R. N. Auer, H. Kalimo, Y. Olsson, B. K. Siesj�, The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathologica. ,vol. 67, pp. 13- 24 ,(1985) , 10.1007/BF00688120
Geoffrey R. Newman, Bharat Jasani, Silver development in microscopy and bioanalysis: past and present The Journal of Pathology. ,vol. 186, pp. 119- 125 ,(1998) , 10.1002/(SICI)1096-9896(1998100)186:2<119::AID-PATH160>3.0.CO;2-M
Ferenc Gallyas, Attila Csord�s, Attila Schwarcz, M�ria M�zl�, “Dark” (compacted) neurons may not die through the necrotic pathway Experimental Brain Research. ,vol. 160, pp. 473- 486 ,(2005) , 10.1007/S00221-004-2037-4
Immo E. Scheffler, Mitochondria make a come back Advanced Drug Delivery Reviews. ,vol. 49, pp. 3- 26 ,(2001) , 10.1016/S0169-409X(01)00123-5
F. Gallyas, Physico-chemical mechanism of the argyrophil III reaction Histochemistry and Cell Biology. ,vol. 74, pp. 409- 421 ,(1982) , 10.1007/BF00493440
F. Gallyas, O. Farkas, M. Mázló, Traumatic compaction of the axonal cytoskeleton induces argyrophilia: histological and theoretical importance. Acta Neuropathologica. ,vol. 103, pp. 36- 42 ,(2002) , 10.1007/S004010100424