On the Stability of Functional Equations in Banach Spaces

作者: Themistocles M Rassias

DOI: 10.1006/JMAA.2000.7046

关键词: Banach spaceMathematicsC0-semigroupFunction spaceFunctional analysisFunctional equationMathematical analysisBanach manifoldEberlein–Šmulian theoremHyers–Ulam–Rassias stabilityPure mathematics

摘要: … In this paper, we will give a general introduction to the theory of stability of the functional equations. We will emphasize the direction wx … In Section 4, we will discuss the quadratic …

参考文章(58)
Jürg Rätz, On Approximately Additive Mappings Birkhäuser, Basel. pp. 233- 251 ,(1980) , 10.1007/978-3-0348-6324-7_22
Themistocles M. Rassias, Functional Equations and Inequalities Springer Netherlands. ,(2000) , 10.1007/978-94-011-4341-7
Soon-Mo Jung, On a general hyers-ulam stability of gamma functional equation Bulletin of The Korean Mathematical Society. ,vol. 34, pp. 437- 446 ,(1997)
Soon-Mo Jung, Superstability of Homogeneous Functional Equation Kyungpook Mathematical Journal. ,vol. 38, pp. 251- 251 ,(1998)
D. H. Hyers, G. Isac, Th. M. Rassias, ON THE ASYMPTOTICITY ASPECT OF HYERS-ULAM STABILITY OF MAPPINGS Proceedings of the American Mathematical Society. ,vol. 126, pp. 425- 430 ,(1998) , 10.1090/S0002-9939-98-04060-X
Roman Ger, Peter Semrl, The stability of the exponential equation Proceedings of the American Mathematical Society. ,vol. 124, pp. 779- 787 ,(1996) , 10.1090/S0002-9939-96-03031-6
Soon-Mo Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application Proceedings of the American Mathematical Society. ,vol. 126, pp. 3137- 3143 ,(1998) , 10.1090/S0002-9939-98-04680-2
Krzysztof Jarosz, Perturbations of Banach algebras ,(1985)
Themistocles M. Rassias, On the Stability of Functional Equations and a Problem of Ulam Acta Applicandae Mathematicae. ,vol. 62, pp. 23- 130 ,(2000) , 10.1023/A:1006499223572