Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity.

作者: L. E. Aragón , E. A. Jagla , A. Rosso

DOI: 10.1103/PHYSREVE.85.046112

关键词: ExponentRelaxation (physics)Scale (ratio)Value (mathematics)ScalingPhysicsInduced seismicityDistribution (mathematics)Poison controlStatistical physics

摘要: We address several questions on the behavior of a numerical model recently introduced to study seismic phenomena, which includes relaxation in plates as key ingredient. First, we make an analysis scaling largest events with system size and show that, when parameters are appropriately interpreted, typical scale size, without necessity tune any parameter. Second, that temporal activity is inherently nonstationary obtain from here justification support for concept ``seismic cycle'' evolution activity. Finally, ask reasons display realistic value decaying exponent $b$ Gutenberg-Richter law avalanche distribution. explain why induces systematic increase its $b\ensuremath{\simeq}0.4$ observed absence relaxation. However, have not been able justify actual robustness displaying consistent around experimentally $b\ensuremath{\simeq}1$.

参考文章(21)
E. A. Jagla, A. B. Kolton, The mechanisms of spatial and temporal earthquake clustering arXiv: Disordered Systems and Neural Networks. ,(2009) , 10.1029/2009JB006974
R. Burridge, L. Knopoff, Model and theoretical seismicity Bulletin of the Seismological Society of America. ,vol. 57, pp. 341- 371 ,(1967)
Thomas Nattermann, Semjon Stepanow, Lei-Han Tang, Heiko Leschhorn, Dynamics of Interface Depinning in a Disordered Medium Journal De Physique Ii. ,vol. 2, pp. 1483- 1488 ,(1992) , 10.1051/JP2:1992214
Dinko Cule, Terence Hwa, Tribology of Sliding Elastic Media. Physical Review Letters. ,vol. 77, pp. 278- 281 ,(1996) , 10.1103/PHYSREVLETT.77.278
Onuttom Narayan, Daniel S. Fisher, Threshold critical dynamics of driven interfaces in random media Physical Review B. ,vol. 48, pp. 7030- 7042 ,(1993) , 10.1103/PHYSREVB.48.7030
Tokuji Utsu, Yosihiko Ogata, Ritsuko S, Matsu'ura, The Centenary of the Omori Formula for a Decay Law of Aftershock Activity Journal of physics of the earth. ,vol. 43, pp. 1- 33 ,(1995) , 10.4294/JPE1952.43.1
Zeev Olami, Hans Jacob S. Feder, Kim Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes Physical Review Letters. ,vol. 68, pp. 1244- 1247 ,(1992) , 10.1103/PHYSREVLETT.68.1244
J. M. Carlson, J. S. Langer, B. E. Shaw, Dynamics of earthquake faults Reviews of Modern Physics. ,vol. 66, pp. 657- 670 ,(1994) , 10.1103/REVMODPHYS.66.657
Falk Amelung, Geoffrey King, Earthquake scaling laws for creeping and non-creeping faults Geophysical Research Letters. ,vol. 24, pp. 507- 510 ,(1997) , 10.1029/97GL00287