Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation

作者: Joseph Bafumi , Andrew Gelman , David K. Park , Noah Kaplan

DOI: 10.1093/PAN/MPI010

关键词: Logistic regressionIdeal (set theory)EstimationOutlierVariance (accounting)Computer scienceIdentifiabilityEconometricsBayesian hierarchical modelingBayesian probability

摘要: Logistic regression models have been used in political science for estimating ideal points of legislators and Supreme Court justices. These present estimation identifiability challenges, such as improper variance estimates, scale translation invariance, reflection issues with outliers. We address these using Bayesian hierarchical modeling, linear transformations, informative predictors, explicit modeling In addition, we explore new ways to usefully display inferences check model fit.

参考文章(21)
Eric Loken, Multimodality in Mixture Models and Factor Models John Wiley & Sons, Ltd. pp. 203- 213 ,(2005) , 10.1002/0470090456.CH19
Keith T. Poole, Howard Rosenthal, Congress: A Political-Economic History of Roll Call Voting ,(2000)
Andrew Gelman, None, Exploratory Data Analysis for Complex Models Journal of Computational and Graphical Statistics. ,vol. 13, pp. 755- 779 ,(2004) , 10.1198/106186004X11435
Aki Vehtari, David B. Dunson, Andrew Gelman, Hal S. Stern, Donald B. Rubin, John B. Carlin, Bayesian Data Analysis ,(1995)