Biochemical characterization of the novel endo-β-mannanase AtMan5-2 from Arabidopsis thaliana.

作者: Yang Wang , Shoaib Azhar , Rosaria Gandini , Christina Divne , Ines Ezcurra

DOI: 10.1016/J.PLANTSCI.2015.10.002

关键词: MannanGlycoside hydrolase family 5ArabidopsisBiochemistryGlycoside hydrolaseGalactoglucomannanBiologyBeta-mannosidaseMannosePichia pastoris

摘要: Plant mannanases are enzymes that carry out fundamentally important functions in cell wall metabolism during plant growth and development by digesting manno-polysaccharides. In this work, the Arabidopsis mannanase 5-2 (AtMan5-2) from a previously uncharacterized subclade of glycoside hydrolase family 5 subfamily 7 (GH5_7) has been heterologously produced Pichia pastoris. Purified recombinant AtMan5-2 is glycosylated protein with an apparent molecular mass 50kDa, pH optimum 5.5-6.0 temperature 25°C. The enzyme exhibits high substrate affinity catalytic efficiency on mannan substrates main chains containing both glucose mannose units such as konjac glucomannan spruce galactoglucomannan. Product analysis manno-oligosaccharide hydrolysis shows requires at least six substrate-binding subsites. No transglycosylation activity for was detected present study. Our results demonstrate diversification function among members GH5_7 subfamily.

参考文章(65)
Susan E. Marcus, Anthony W. Blake, Thomas A. S. Benians, Kieran J. D. Lee, Callum Poyser, Lloyd Donaldson, Olivier Leroux, Artur Rogowski, Henriette L. Petersen, Alisdair Boraston, Harry J. Gilbert, William G. T. Willats, J. Paul Knox, Restricted access of proteins to mannan polysaccharides in intact plant cell walls Plant Journal. ,vol. 64, pp. 191- 203 ,(2010) , 10.1111/J.1365-313X.2010.04319.X
Yuya Kumagai, Kayoko Kawakami, Misugi Uraji, Tadashi Hatanaka, Binding of bivalent ions to actinomycete mannanase is accompanied by conformational change and is a key factor in its thermal stability. Biochimica et Biophysica Acta. ,vol. 1834, pp. 301- 307 ,(2013) , 10.1016/J.BBAPAP.2012.08.011
L. R. S. Moreira, E. X. F. Filho, An overview of mannan structure and mannan-degrading enzyme systems Applied Microbiology and Biotechnology. ,vol. 79, pp. 165- 178 ,(2008) , 10.1007/S00253-008-1423-4
J. Brian Windsor, V. Vaughan Symonds, John Mendenhall, Alan M. Lloyd, Arabidopsis seed coat development: morphological differentiation of the outer integument Plant Journal. ,vol. 22, pp. 483- 493 ,(2000) , 10.1046/J.1365-313X.2000.00756.X
Lukas Käll, Anders Krogh, Erik L.L Sonnhammer, A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology. ,vol. 338, pp. 1027- 1036 ,(2004) , 10.1016/J.JMB.2004.03.016
Mark Hilge, Sergio M Gloor, Wojciech Rypniewski, Oliver Sauer, Tom D Heightman, Wolfgang Zimmermann, Kaspar Winterhalter, Klaus Piontek, High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca – substrate specificity in glycosyl hydrolase family 5 Structure. ,vol. 6, pp. 1433- 1444 ,(1998) , 10.1016/S0969-2126(98)00142-7
Yunjun Zhao, Qian Zhang, Luxia Yuan, Rui Zhang, Laigeng Li, N-glycosylation and dimerization regulate the PtrMAN6 enzyme activity that may modulate generation of oligosaccharide signals. Plant Signaling & Behavior. ,vol. 8, ,(2013) , 10.4161/PSB.26956
Debbie Winter, Ben Vinegar, Hardeep Nahal, Ron Ammar, Greg V Wilson, Nicholas J Provart, None, An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets PLoS ONE. ,vol. 2, pp. e718- 12 ,(2007) , 10.1371/JOURNAL.PONE.0000718
J. Ma, S. Wang, F. Zhao, J. Xu, Protein threading using context-specific alignment potential Bioinformatics. ,vol. 29, pp. 257- 265 ,(2013) , 10.1093/BIOINFORMATICS/BTT210