Invariants for the computation of intransitive and transitive Galois groups

作者: Andreas-Stephan Elsenhans

DOI: 10.1016/J.JSC.2011.11.006

关键词: Galois groupGalois extensionEmbedding problemFundamental theorem of Galois theoryNormal basisGalois theoryGalois cohomologyDifferential Galois theoryMathematicsDiscrete mathematics

摘要: Abstract One hard step in the computation of Galois groups by Stauduhar’s method is construction relative invariants. In this note, a representation-theoretic approach given for case an intransitive group. second part article, it shown that can be used have suitable subgroup. The solves open question Fieker and Kluners.

参考文章(18)
Mohammad A. Shokrollahi, Michael Clausen, Peter Brgisser, Algebraic Complexity Theory ,(1996)
Bernd Sturmfels, Algorithms in Invariant Theory ,(1993)
Alexander Hulpke, Constructing transitive permutation groups Journal of Symbolic Computation. ,vol. 39, pp. 1- 30 ,(2005) , 10.1016/J.JSC.2004.08.002
WIEB BOSMA, JOHN CANNON, CATHERINE PLAYOUST, The MAGMA algebra system I: the user language Journal of Symbolic Computation. ,vol. 24, pp. 235- 265 ,(1997) , 10.1006/JSCO.1996.0125
Richard P. Stauduhar, The Determination of Galois Groups Mathematics of Computation. ,vol. 27, pp. 981- 996 ,(1973) , 10.1090/S0025-5718-1973-0327712-4
John J. Cannon, Derek F. Holt, The Transitive Permutation Groups of Degree 32 Experimental Mathematics. ,vol. 17, pp. 307- 314 ,(2008) , 10.1080/10586458.2008.10129046
John Cannon, Derek F. Holt, Computing maximal subgroups of finite groups Journal of Symbolic Computation. ,vol. 37, pp. 589- 609 ,(2004) , 10.1016/J.JSC.2003.08.002
Katharina Geissler, Jürgen Klüners, Galois Group Computation for Rational Polynomials Journal of Symbolic Computation. ,vol. 30, pp. 653- 674 ,(2000) , 10.1006/JSCO.2000.0377
Gordon James, Martin Liebeck, Representations and Characters of Groups Physics Today. ,vol. 47, pp. 94- 94 ,(2001) , 10.1017/CBO9780511814532