The Transitive Permutation Groups of Degree 32

作者: John J. Cannon , Derek F. Holt

DOI: 10.1080/10586458.2008.10129046

关键词:

摘要: We describe our successful computation of a list representatives the 2,801,324 conjugacy classes transitive groups degree 32.

参考文章(21)
B. A. Pogorelov, Primitive permutation groups of small degrees. II Algebra and Logic. ,vol. 19, pp. 278- 296 ,(1980) , 10.1007/BF01674471
Alexander Hulpke, Constructing transitive permutation groups Journal of Symbolic Computation. ,vol. 39, pp. 1- 30 ,(2005) , 10.1016/J.JSC.2004.08.002
WIEB BOSMA, JOHN CANNON, CATHERINE PLAYOUST, The MAGMA algebra system I: the user language Journal of Symbolic Computation. ,vol. 24, pp. 235- 265 ,(1997) , 10.1006/JSCO.1996.0125
Gordon F. Royle, The transitive groups of degree twelve Journal of Symbolic Computation. ,vol. 4, pp. 255- 268 ,(1987) , 10.1016/S0747-7171(87)80068-8
Gregory Butler, John Mckay, The transitive groups of degree up to eleven Communications in Algebra. ,vol. 11, pp. 863- 911 ,(1983) , 10.1080/00927878308822884
Richard P. Stauduhar, The Determination of Galois Groups Mathematics of Computation. ,vol. 27, pp. 981- 996 ,(1973) , 10.1090/S0025-5718-1973-0327712-4
Wieb Bosma, Bart DE Smit, Class Number Relations from a Computational Point of View Journal of Symbolic Computation. ,vol. 31, pp. 97- 112 ,(2001) , 10.1006/JSCO.1999.1016
Jürgen Klüners, Gunter Malle, Explicit Galois Realization of Transitive Groups of Degree up to 15 Journal of Symbolic Computation. ,vol. 30, pp. 675- 716 ,(2000) , 10.1006/JSCO.2000.0378
Colva M. Roney-Dougal, William R. Unger, The affine primitive permutation groups of degree less than 1000 Journal of Symbolic Computation. ,vol. 35, pp. 421- 439 ,(2003) , 10.1016/S0747-7171(03)00031-2
Jeffrey S. Leon, Permutation group algorithms based on partitions, I: Theory and algorithms Journal of Symbolic Computation. ,vol. 12, pp. 533- 583 ,(1991) , 10.1016/S0747-7171(08)80103-4