Semantic Instance Labeling Leveraging Hierarchical Segmentation

作者: Steven Hickson , Irfan Essa , Henrik Christensen

DOI: 10.1109/WACV.2015.147

关键词: Random forestArtificial intelligenceDecision treePattern recognitionHistogramClassifier (UML)SegmentationPixelSimple FeaturesComputer visionColor histogramComputer science

摘要: Most of the approaches for indoor RGBD semantic labeling focus on using pixels or super to train a classifier. In this paper, we implement higher level segmentation hierarchy obtain better training our By focusing meaningful segments that conform more directly objects, regardless size, random forest decision trees as classifier simple features such 3D LAB color histogram, width, height, and shape specified by histogram surface normal's. We test method NYU V2 depth dataset, challenging dataset cluttered environments. Our experiments show achieves state art results both general introduced (floor, structure, furniture, objects) object specific labeling. from yields than pixels, patches, in previous work.

参考文章(28)
Nathan Silberman, Derek Hoiem, Pushmeet Kohli, Rob Fergus, Indoor Segmentation and Support Inference from RGBD Images Computer Vision – ECCV 2012. pp. 746- 760 ,(2012) , 10.1007/978-3-642-33715-4_54
Anran Wang, Jiwen Lu, Gang Wang, Jianfei Cai, Tat-Jen Cham, None, Multi-modal Unsupervised Feature Learning for RGB-D Scene Labeling Computer Vision – ECCV 2014. pp. 453- 467 ,(2014) , 10.1007/978-3-319-10602-1_30
Wolfram Burgard, Oscar Martinez Mozos, Rudolph Triebel, Axel Rottmann, Patric Jensfelt, Semantic labeling of places using information extracted from laser and vision sensor data ,(2006)
Clément Farabet, Clément Farabet, Camille Couprie, Yann LeCun, Laurent Najman, Indoor Semantic Segmentation using depth information arXiv: Computer Vision and Pattern Recognition. ,(2013)
Wolfram Burgard, Oscar Martinez Mozos, Axel Rottmann, Cyrill Stachniss, Semantic labeling of places ,(2005)
Saurabh Gupta, Ross Girshick, Pablo Arbeláez, Jitendra Malik, Learning Rich Features from RGB-D Images for Object Detection and Segmentation european conference on computer vision. pp. 345- 360 ,(2014) , 10.1007/978-3-319-10584-0_23
G. Csurka, Visual categorization with bags of keypoints european conference on computer vision. ,vol. 1, pp. 22- ,(2004)
Alexey Abramov, Karl Pauwels, Jeremie Papon, Florentin Worgotter, Babette Dellen, Depth-supported real-time video segmentation with the Kinect workshop on applications of computer vision. pp. 457- 464 ,(2012) , 10.1109/WACV.2012.6163000
S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, N. Navab, Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images intelligent robots and systems. pp. 2684- 2689 ,(2012) , 10.1109/IROS.2012.6385999
César Cadena, Jana Košecká, Semantic parsing for priming object detection in indoors RGB-D scenes The International Journal of Robotics Research. ,vol. 34, pp. 582- 597 ,(2015) , 10.1177/0278364914549488