Exploiting negative curvature directions in linesearch methods for unconstrained optimization

作者: N. I. M. Gould , S. Lucidi , M. Roma , PH. L. Toint

DOI: 10.1080/10556780008805794

关键词: Point (geometry)Mathematical optimizationScale (ratio)ScalingConjugate gradient methodMathematicsIterated functionCurrent (mathematics)Convergence (routing)Line (geometry)

摘要: In this paper we propose efficient new linesearch algorithms for solving large scale unconstrained optimization problems which exploit any local nonconvexity of the objective function. Current in class typically compute a pair search directions at every iteration: Newton-type direction, ensures both global and fast asymptotic convergence, negative curvature enables iterates to escape from region non-convexity. A point is generated by performing along line or curve obtained combining these two directions. However, almost all if algorithms, relative scaling not taken into account. We algorithm accounts To do this, only most promising selected given iteration, performed chosen direction. The appropriate direction estimating rate decreas...

参考文章(21)
Jorge J. Moré, Danny C. Sorensen, On the use of directions of negative curvature in a modified newton method Mathematical Programming. ,vol. 16, pp. 1- 20 ,(1979) , 10.1007/BF01582091
I. Bongartz, A. R. Conn, Nick Gould, Ph. L. Toint, CUTE: constrained and unconstrained testing environment ACM Transactions on Mathematical Software. ,vol. 21, pp. 123- 160 ,(1995) , 10.1145/200979.201043
Anders Forsgren, Walter Murray, Newton Methods For Large-Scale Linear Inequality-Constrained Minimization Siam Journal on Optimization. ,vol. 7, pp. 162- 176 ,(1997) , 10.1137/S1052623494279122
Jane K. Cullum, Ralph A. Willoughby, Lanczos algorithms for large symmetric eigenvalue computations Birkhäuser. ,(1985)
Garth P. McCormick, A MODIFICATION OF ARMIJO'S STEP-SIZE RULE FOR NEGATIVE CURVATURE* Mathematical Programming. ,vol. 13, pp. 111- 115 ,(1977) , 10.1007/BF01584328
Stefano Lucidi, Francesco Rochetich, Massimo Roma, Curvilinear Stabilization Techniques for Truncated Newton Methods in Large Scale Unconstrained Optimization Siam Journal on Optimization. ,vol. 8, pp. 916- 939 ,(1998) , 10.1137/S1052623495295250
Ron S. Dembo, Trond Steihaug, Truncated-newtono algorithms for large-scale unconstrained optimization Mathematical Programming. ,vol. 26, pp. 190- 212 ,(1983) , 10.1007/BF02592055
Gerald A. Shultz, Robert B. Schnabel, Richard H. Byrd, A Family of Trust Region Based Algorithms for Unconstrained Minimization with Strong Global Convergence Properties. SIAM Journal on Numerical Analysis. ,vol. 22, pp. 47- 67 ,(1982) , 10.1137/0722003
L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization Journal of Optimization Theory and Applications. ,vol. 60, pp. 401- 419 ,(1989) , 10.1007/BF00940345
R. Fletcher, T. L. Freeman, A modified Newton method for minimization Journal of Optimization Theory and Applications. ,vol. 23, pp. 357- 372 ,(1977) , 10.1007/BF00933446