Mining microarray expression data for classifier gene-cores

作者: Goutham Kurra , Raj Bhatnagar , Wen Niu

DOI:

关键词: PerceptronData miningClassifier (UML)DNA microarrayExpression dataMicroarrayComputer scienceGene

摘要: We present algorithms and methods for mining DNA microarray expression data from a classification perspective. demonstrate these on gene dataset containing two acute leukemia classes. A prioritized feature-selection approach is followed to account incomplete knowledge of function complex inter-gene dependencies. utilize combination class scatter metrics heuristic search determine all those minimal combinations genes that have potential discriminate between the modified perceptron training algorithm further trains discriminant gene-sets. This process results in large number distinct accurate classifiers (gene sets). an which then employed mine discover 'core' patterns compositions classifier These cores are potentially very useful biologist may reveal much about dependencies functions.

参考文章(6)
David W. Aha, Richard L. Bankert, A Comparative Evaluation of Sequential Feature Selection Algorithms Learning from Data. pp. 199- 206 ,(1996) , 10.1007/978-1-4612-2404-4_19
Sandrine Dudoit, Jane Fridlyand, Terence P Speed, None, Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association. ,vol. 97, pp. 77- 87 ,(2002) , 10.1198/016214502753479248
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: Simplicity from complexity Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 8409- 8414 ,(2000) , 10.1073/PNAS.150242097
S.I. Gallant, Perceptron-based learning algorithms IEEE Transactions on Neural Networks. ,vol. 1, pp. 179- 191 ,(1990) , 10.1109/72.80230
M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Cluster analysis and display of genome-wide expression patterns Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 14863- 14868 ,(1998) , 10.1073/PNAS.95.25.14863