Characterization of electrically tunable liquid lens and adaptive optics for aberration correction

作者: Yiin-Kuen Fuh , Jui-Kuan Chen , Pin-Wen Chen

DOI: 10.1016/J.IJLEO.2015.09.105

关键词: Zernike polynomialsPiston (optics)OpticsLens (optics)Strehl ratioTilt (optics)PhysicsGradient-index opticsWavefrontAdaptive optics

摘要: Abstract One specific kind of electrically tunable lenses is utilizing curvature change via adjusting input currents which electromagnetically exerts pressure on liquid volume to achieve variable-focusing properties. Nevertheless, the nature and refractive index mismatch causes inherent spatial aberrations that severely degrade image quality. The novelty presented method lies in experimental study optical aberrations, such as root mean square (RMS), Strehl ratio Zernike coefficients induced from use adaptive optics compensate for wavefront errors. properties lens are quantitatively characterized by Shack – Hartmann measurements. Adaptive optics-based scheme demonstrated current range 78–95 mA, resulting a substantial reduction errors 0.55, 0.53 0.22, 0.2 μm, respectively, corresponding focal power tunability −2.52 0.2 diopters. It experimentally showed defocus (Z5) aberration most significant one since changes varies proportional with changing currents, can be significantly improved 0.328 μm 0.156 μm optics. Similar improvements found piston (Z1)/tip (Z2)/tilt (Z3) integration

参考文章(23)
Wenhan Jiang, Cheng Wang, Yudong Zhang, Yiyun Hu, Xuejun Rao, Ning Ling, High resolution mosaic image of capillaries in human retina by adaptive optics Chinese Optics Letters. ,vol. 3, pp. 225- 226 ,(2005)
Yiin Kuen Fuh, Kuo Chan Hsu, Jia Ren Fan, Ming Xien Lin, Induced aberrations by combinative convex/concave interfaces of refractive-index-mismatch and capability of adaptive optics correction Microwave and Optical Technology Letters. ,vol. 53, pp. 2610- 2615 ,(2011) , 10.1002/MOP.26323
Yiin-Kuen Fuh, Kuo-Chan Hsu, Ming-Xin Lin, Jia-Ren Fan, Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astigmatism Optik. ,vol. 124, pp. 706- 709 ,(2013) , 10.1016/J.IJLEO.2012.01.019
Yiin-Kuen Fuh, Kuo Chan Hsu, Jia Ren Fan, Roughness measurement of metals using a modified binary speckle image and adaptive optics Optics and Lasers in Engineering. ,vol. 50, pp. 312- 316 ,(2012) , 10.1016/J.OPTLASENG.2011.11.003
Yiin Kuen Fuh, Kuo Chan Hsu, Jia Ren Fan, Rapid in-process measurement of surface roughness using adaptive optics Optics Letters. ,vol. 37, pp. 848- 850 ,(2012) , 10.1364/OL.37.000848
Nikolas Chronis, Gang Liu, Ki-Hun Jeong, Luke Lee, Tunable liquid-filled microlens array integrated with microfluidic network. Optics Express. ,vol. 11, pp. 2370- 2378 ,(2003) , 10.1364/OE.11.002370
Yiin-Kuen Fuh, Ming-Xin Lin, Adaptive optics correction of a tunable fluidic lens for ophthalmic applications Optics Communications. ,vol. 308, pp. 100- 104 ,(2013) , 10.1016/J.OPTCOM.2013.05.060
Randall Marks, David L. Mathine, Gholam Peyman, Jim Schwiegerling, N. Peyghambarian, Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses Optics Letters. ,vol. 35, pp. 739- 741 ,(2010) , 10.1364/OL.35.000739
Bryant Grigsby, Chris Lockwood, Brian Baumann, Don Gavel, Jess Johnson, S. Mark Ammons, Daren Dillon, Katie Morzinski, Marc Reinig, Dave Palmer, Scott Severson, Elinor Gates, ViLLaGEs: Opto-Mechanical Design of an on-sky visible-light MEMS-based AO system Proceedings of SPIE. ,vol. 7018, pp. 701841- ,(2008) , 10.1117/12.790166
De-Ying Zhang, Nicole Justis, Yu-Hwa Lo, Fluidic adaptive lens of transformable lens type Applied Physics Letters. ,vol. 84, pp. 4194- 4196 ,(2004) , 10.1063/1.1756679