Pathophysiology of Ischemic/ Toxic Acute Renal Failure

作者: Vittorio E. Andreucci

DOI: 10.1007/978-1-4613-2841-4_1

关键词: Blood volumeKidneyFractional excretion of sodiumRenal cortexCreatinineAcute tubular necrosisLow sodiumMedicineRenal functionUrology

摘要: An adequate blood flow through the renal cortex and sufficient hemodynamic pressure in glomerular capillaries are both critical prerequisites for normal filtration. If either a fall systemic or circulatory failure (due to acute myocardial infarction other heart disease) reduction of volume depletion secondary hemorrhage fluid loss from burns, vomiting, diarrhea, excessive sweating, etc.) occurs, perfusion is reduced filtration decreased. Homeostatic mechanisms body conservation then activated with an increase antidiuretic hormone aldosterone secretion enhancement reabsorptive activity tubular epithelium. Reduction urine output results, while urinary excretion nitrogenous end products increases plasma concentrations urea creatinine. In this “functional” phase (ARF) [1] extrarenal functional insufficiency [2] (the so-called “prerenal azotemia” ARF”), kidney not damaged integrity preserved: tubules, fact, retain sodium avidly concentrate urine; thus, becomes hypertonic, low concentration markedly fractional (FENa). cardiac restored values, function rapidly returns normal. hypotension, sustained failure, hypovolemia) maintained even worsened, “organic” damage ensues “acute necrosis,” ATN, “intrinsic ARF”) which oligo-anuria associated ability epithelium, resulting isoosmotic increased filtered (FENa>l%). patient survives (with help dialysis) despite function, recovery volume, usually occurs within 10 15 days, but sometimes 30 days more after onset [3].

参考文章(287)
Chen H. Hsu, Theodore W. Kurtz, Jonathan Rosenzweig, John M. Weller, Renal hemodynamics in HgCl2-induced acute renal failure. Nephron. ,vol. 18, pp. 326- 332 ,(1977) , 10.1159/000180851
D. C. Houghton, M. Hartnett, W. Bennett, M. Campbell-Boswell, G. Porter, A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. American Journal of Pathology. ,vol. 82, pp. 589- 612 ,(1976)
A.R. Whorton, M. Smigel, J.A. Oates, J.C. Frölich, Regional differences in prostacyclin formation by the kidney: Prostacyclin is a major prostaglandin of renal cortex Biochimica et Biophysica Acta. ,vol. 529, pp. 176- 180 ,(1978) , 10.1016/0005-2760(78)90116-9
JA Swain, GR Heyndrickx, DH Boettcher, SF Vatner, Prostaglandin control of renal circulation in the unanesthetized dog and baboon American Journal of Physiology. ,vol. 229, pp. 826- 830 ,(1975) , 10.1152/AJPLEGACY.1975.229.3.826
D C Dobyan, J Levi, C Jacobs, J Kosek, M W Weiner, Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations. Journal of Pharmacology and Experimental Therapeutics. ,vol. 213, pp. 551- 556 ,(1980)
Juan A. Oliver, Robert R. Sciacca, John Pinto, Paul J. Cannon, Participation of the Prostaglandins in the Control of Renal Blood Flow during Acute Reduction of Cardiac Output in the Dog Journal of Clinical Investigation. ,vol. 67, pp. 229- 237 ,(1981) , 10.1172/JCI110018
J. Schnermann, D. W. Ploth, M. Hermle, Activation of tubulo-glomerular feedback by chloride transport. Pflügers Archiv: European Journal of Physiology. ,vol. 362, pp. 229- 240 ,(1976) , 10.1007/BF00581175
Robert L. Baranowski, Christof Westenfelder, Neil A. Kurtzman, Intrarenal renin and angiotensins in glycerol-induced acute renal failure Kidney International. ,vol. 14, pp. 576- 584 ,(1978) , 10.1038/KI.1978.166
William J.H. Caldicott, Kenneth J. Taub, Sharon S. Margulies, Norman K. Hollenberg, Angiotensin receptors in glomeruli differ from those in renal arterioles Kidney International. ,vol. 19, pp. 687- 693 ,(1981) , 10.1038/KI.1981.68