Dielectric relaxation and transport in porous silicon

作者: E. Axelrod , A. Givant , J. Shappir , Y. Feldman , A. Sa’ar

DOI: 10.1103/PHYSREVB.65.165429

关键词: Delocalized electronMaterials scienceRelaxation (physics)Cole–Cole equationCondensed matter physicsDielectricNuclear magnetic resonanceAtmospheric temperature rangePorous siliconActivation energyDielectric spectroscopy

摘要: Results of dielectric spectroscopy study porous silicon samples in the frequency range 20 Hz-1 MHz and temperature 173-493 K. are presented. We found three relaxation processes that dominate at low, moderate high temperatures, respectively. At low temperatures dispersion is composed two Cole-Cole with activation energies 0.2 0.3 eV, complex function exhibits frequency-dependent power laws well described by Jonscher empirical terms. above 400 K we a large dc conductivity, energy 0.46 an additional Havriliak-Negami process typical times order 10 - 3 sec. Following our findings, propose comprehensive model, which assigns these to fractal geometry thermally activated from localized delocalized electronic states nanocrystallites. In addition, argue high-temperature cannot be explained on basis response mode cooperative appears temperatures.

参考文章(33)
L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers Applied Physics Letters. ,vol. 57, pp. 1046- 1048 ,(1990) , 10.1063/1.103561
A. G. Cullis, L. T. Canham, P. D. J. Calcott, The structural and luminescence properties of porous silicon Journal of Applied Physics. ,vol. 82, pp. 909- 965 ,(1997) , 10.1063/1.366536
W. Theiß, Optical properties of porous silicon Surface Science Reports. ,vol. 29, pp. 91- 192 ,(1997) , 10.1016/S0167-5729(96)00012-X
O. Bisi, Stefano Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics Surface Science Reports. ,vol. 38, pp. 1- 126 ,(2000) , 10.1016/S0167-5729(99)00012-6
D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch, Breakdown of the k -Conservation Rule in Si Nanocrystals Physical Review Letters. ,vol. 81, pp. 2803- 2806 ,(1998) , 10.1103/PHYSREVLETT.81.2803
F. Koch, Insulating films on a quantum semiconductor: light emitting porous silicon Microelectronic Engineering. ,vol. 28, pp. 237- 245 ,(1995) , 10.1016/0167-9317(95)00052-A
S. M. Prokes, W. E. Carlos, O. J. Glembocki, Defect-based model for room-temperature visible photoluminescence in porous silicon. Physical Review B. ,vol. 50, pp. 17093- 17096 ,(1994) , 10.1103/PHYSREVB.50.17093
Frederick G. Anderson, Frank S. Ham, Gunter Grossmann, Lattice distortions and electronic structure in the negative silicon vacancy Physical Review B. ,vol. 53, pp. 7205- 7216 ,(1996) , 10.1103/PHYSREVB.53.7205
M.S. Brandt, H.D. Fuchs, M. Stutzmann, J. Weber, M. Cardona, The origin of visible luminescencefrom “porous silicon”: A new interpretation Solid State Communications. ,vol. 81, pp. 307- 312 ,(1992) , 10.1016/0038-1098(92)90815-Q
S. M. Prokes, O. J. Glembocki, V. M. Bermudez, R. Kaplan, L. E. Friedersdorf, P. C. Searson, SiHx excitation: An alternate mechanism for porous Si photoluminescence. Physical Review B. ,vol. 45, pp. 13788- 13791 ,(1992) , 10.1103/PHYSREVB.45.13788