Chaos and Regularity in the Doubly Magic Nucleus ^{208}Pb.

作者: B. Dietz , A. Heusler , K. H. Maier , A. Richter , B. A. Brown

DOI: 10.1103/PHYSREVLETT.118.012501

关键词: Spectral lineRandom matrixPoisson distributionGaussianBound statePhysicsParity (physics)Quantum mechanicsExcitationSigma

摘要: High-resolution experiments have recently lead to a complete identification (energy, spin, and parity) of 151 nuclear levels up an excitation energy ${E}_{x}=6.20\text{ }\text{ }\mathrm{MeV}$ in $^{208}\mathrm{Pb}$ [Heusler et al., Phys. Rev. C 93, 054321 (2016)]. We present thorough study the fluctuation properties spectra unprecedented set bound states. In first approach, we group states with same spin parity into 14 subspectra, analyze standard statistical measures for short- long-range correlations, i.e., nearest-neighbor spacing distribution, number variance ${\mathrm{\ensuremath{\Sigma}}}^{2}$, Dyson-Mehta ${\mathrm{\ensuremath{\Delta}}}_{3}$ statistics, novel distribution ratios consecutive spacings adjacent each sequence, then compute their ensemble average. Their comparison random matrix which interpolates between Poisson statistics expected regular systems Gaussian orthogonal (GOE) predicted chaotic shows that data are well described by GOE. second following idea Rosenzweig Porter [Phys. 120, 1698 (1960)], consider spectrum composed independent subspectra. using method Bayesian inference involving quantitative measure, called chaoticity parameter $f$, also ($f=0$) GOE ($f=1$). It turns out be $f\ensuremath{\approx}0.9$. This is so far closest agreement observed nucleus. The analysis performed computed on basis shell model calculations different interactions (surface-delta interaction, Kuo-Brown, Michigan-three-Yukawa). While simple surface-delta interaction exhibits features typical many-body dynamics, other, more realistic yield parameters $f$ close experimental values.

参考文章(47)
S. Raman, T. A. Walkiewicz, S. Kahane, E. T. Jurney, J. Sa, Z. Gácsi, J. L. Weil, K. Allaart, G. Bonsignori, J. F. Shriner, Nearly complete level scheme of 116 Sn below 4.3 MeV Physical Review C. ,vol. 43, pp. 521- 555 ,(1991) , 10.1103/PHYSREVC.43.521
Thomas Guhr, Axel Müller–Groeling, Hans A. Weidenmüller, Random-matrix theories in quantum physics: common concepts Physics Reports. ,vol. 299, pp. 189- 425 ,(1998) , 10.1016/S0370-1573(97)00088-4
T.T.S. Kuo, State dependence of shell-model reaction matrix elements Nuclear Physics. ,vol. 103, pp. 71- 96 ,(1967) , 10.1016/0375-9474(67)90790-7
V. Gillet, A.M. Green, E.A. Sanderson, Particle-hole description of lead 208 Physics Letters. ,vol. 11, pp. 44- 46 ,(1964) , 10.1016/0031-9163(64)90251-3
Vladimir Zelevinsky, B.Alex Brown, Njema Frazier, Mihai Horoi, The nuclear shell model as a testing ground for many-body quantum chaos Physics Reports. ,vol. 276, pp. 85- 176 ,(1996) , 10.1016/S0370-1573(96)00007-5
JF Shriner, Jr, GE Mitchell, BA Brown, Statistical properties and broken symmetries within the shell model Physical Review C. ,vol. 71, pp. 024313- ,(2005) , 10.1103/PHYSREVC.71.024313
T Guhr, H.A Weidenmüller, Coexistence of collectivity and chaos in nuclei Annals of Physics. ,vol. 193, pp. 472- 489 ,(1989) , 10.1016/0003-4916(89)90006-7
Steven W. McDonald, Allan N. Kaufman, Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories Physical Review Letters. ,vol. 42, pp. 1189- 1191 ,(1979) , 10.1103/PHYSREVLETT.42.1189
A. Heusler, R. V. Jolos, P. von Brentano, Excitation Energies of Particle-Hole States in 208 Pb and the Surface Delta Interaction ∗ Physics of Atomic Nuclei. ,vol. 76, pp. 807- 827 ,(2013) , 10.1134/S1063778813070065
G. Casati, F. Valz-Gris, I. Guarnieri, On the connection between quantization of nonintegrable systems and statistical theory of spectra Lettere Al Nuovo Cimento. ,vol. 28, pp. 279- 282 ,(1980) , 10.1007/BF02798790