Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5 , confer partial resistance to soybean cyst nematode ( Heterodera glycines ) when overexpressed in transgenic soybean roots

作者: Benjamin F Matthews , Hunter Beard , Eric Brewer , Sara Kabir , Margaret H MacDonald

DOI: 10.1186/1471-2229-14-96

关键词:

摘要: Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is key hormone triggering response against biotrophic hemi-biotrophic pathogens, while jasmonic (JA) derivatives are critical necrotrophic pathogens. Several reports demonstrate SA limits nematode reproduction. Here we translate knowledge gained from soybean. The ability of thirty-one genes encoding important components JA synthesis in conferring resistance soybean cyst (SCN: Heterodera glycines) investigated. We overexpression three Arabidoposis transgenic roots composite plants decreased number cysts formed by SCN less than 50% those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), AtPR-5 (38%). Three additional 40% or more: AtACBP3 (53% value), AtACD2 (55%), AtCM-3 (57%). Other having no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), AtPR-1 (80%), as compared control. Overexpression AtDND1 greatly increased susceptibility indicated a large increase (175% control). Knowledge pathogen system, Arabidopsis, can be directly translated through direct genes. When genes, AtNPR1, AtGA2, AtPR-5, specific involved regulation, synthesis, signaling, overexpressed enhanced. This demonstrates functional compatibility some with identifies may used engineer nematodes.

参考文章(157)
N. I. Vasyukova, S. V. Zinov'eva, Zh. V. Udalova, Ya. S. Panina, O. L. Ozeretskovskaya, M. D. Sonin, The role of salicylic acid in systemic resistance of tomato to nematodes. Doklady Biological Sciences. ,vol. 391, pp. 343- 345 ,(2003) , 10.1023/A:1025158702692
A. Mauromoustakos, D. G. Kim, R. D. Riggs, Variation in Resistance of Soybean Lines to Races of Heterodera glycines. Journal of Nematology. ,vol. 30, pp. 184- 191 ,(1998)
Marianne C. Verberne, Retno A. Budi Muljono, Robert Verpoorte, Chapter 13 – Salicylic acid biosynthesis New Comprehensive Biochemistry. ,vol. 33, pp. 295- 312 ,(1999) , 10.1016/S0167-7306(08)60493-7
R. D. Riggs, D. P. Schmitt, Optimization of the Heterodera glycines Race Test Procedure. Journal of Nematology. ,vol. 23, pp. 149- 154 ,(1991)
H C Hurst, Transcription factors 1: bZIP proteins. Protein Profile. ,vol. 2, pp. 101- 168 ,(1995)
Alexandre Berr, Rozenn Ménard, Thierry Heitz, Wen-Hui Shen, Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cellular Microbiology. ,vol. 14, pp. 829- 839 ,(2012) , 10.1111/J.1462-5822.2012.01785.X
Tina Kyndt, Kamrun Nahar, Annelies Haegeman, David De Vleesschauwer, Monica Höfte, Godelieve Gheysen, Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology. ,vol. 14, pp. 73- 82 ,(2012) , 10.1111/J.1438-8677.2011.00524.X
Sergio Molinari, Elisabetta Loffredo, The role of salicylic acid in defense response of tomato to root-knot nematodes Physiological and Molecular Plant Pathology. ,vol. 68, pp. 69- 78 ,(2006) , 10.1016/J.PMPP.2006.07.001
Guru Jagadeeswaran, Surabhi Raina, Biswa R. Acharya, Shahina B. Maqbool, Stephen L. Mosher, Heidi M. Appel, Jack C. Schultz, Daniel F. Klessig, Ramesh Raina, ArabidopsisGH3-LIKE DEFENSE GENE 1is required for accumulation of salicylic acid, activation of defense responses and resistance toPseudomonas syringae The Plant Journal. ,vol. 51, pp. 234- 246 ,(2007) , 10.1111/J.1365-313X.2007.03130.X