Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR) for Research into Biomass Feed-Stocks

作者: Gordon G.

DOI: 10.5772/15785

关键词:

摘要: Non-food biomass crops eg switchgrass (Panicum virgatum L.), Miscanthus x giganteus, and short-rotation coppice poplar (Poplus spp.) and willow (Salix spp.) offer a sustainable source …

参考文章(53)
JOHN Clifton-Brown, PAUL Robson, GORDON Allison, S Lister, R Sanderson, E Hodgson, K Farrar, S Hawkins, E Jensen, S Jones, L Huang, P Roberts, S Youell, B Jones, A Wright, J Valantine, I Donnison, None, Miscanthus: breeding our way to a better future Aspects of applied biology. ,vol. 90, pp. 199- 206 ,(2008)
Gordon G. Allison, Mark P. Robbins, José Carli, John C. Clifton-Brown, Iain S. Donnison, Designing Biomass Crops with Improved Calorific Content and Attributes for Burning: a UK Perspective Springer Berlin Heidelberg. pp. 25- 55 ,(2010) , 10.1007/978-3-642-13440-1_2
Lan Sun, Blake A. Simmons, Seema Singh, Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging Biotechnology and Bioengineering. ,vol. 108, pp. 286- 295 ,(2011) , 10.1002/BIT.22931
Sylvie Giger-Reverdin, Review of the main methods of cell wall estimation: interest and limits for ruminants Animal Feed Science and Technology. ,vol. 55, pp. 295- 334 ,(1995) , 10.1016/0377-8401(95)00791-K
Sijmen de Jong, SIMPLS: an alternative approach to partial least squares regression Chemometrics and Intelligent Laboratory Systems. ,vol. 18, pp. 251- 263 ,(1993) , 10.1016/0169-7439(93)85002-X
A.V Bridgwater, Renewable fuels and chemicals by thermal processing of biomass Chemical Engineering Journal. ,vol. 91, pp. 87- 102 ,(2003) , 10.1016/S1385-8947(02)00142-0
Gordon G. Allison, Simon C. Thain, Phillip Morris, Catherine Morris, Sarah Hawkins, Barbara Hauck, Tim Barraclough, Nicola Yates, Ian Shield, Anthony V. Bridgwater, Iain S. Donnison, Quantification of hydroxycinnamic acids and lignin in perennial forage and energy grasses by Fourier-transform infrared spectroscopy and partial least squares regression. Bioresource Technology. ,vol. 100, pp. 1252- 1261 ,(2009) , 10.1016/J.BIORTECH.2008.07.043