Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process

作者: M. Grujicic , J.R. Saylor , D.E. Beasley , W.S. DeRosset , D. Helfritch

DOI: 10.1016/S0169-4332(03)00643-3

关键词:

摘要: The cold-gas dynamic-spray process is analyzed by numerical modeling of the impact between a single spherical feed-powder particle and semi-infinite substrate. approach applied to copper‐aluminum system help explain experimentally observed higher deposition efficiencies copper on aluminum than ones associated with copper. To properly account for high strain, strain-rate deformation behavior two materials, appropriate linear-elastic rate-dependent, temperature-dependent, strain-hardening materials constitutive models are used. results obtained indicate that main factors contributing efficiency in case larger particle/substrate interfacial area contact pressures. Both these result kinetic energy heavier particle. character dominant bonding mechanism also discussed present paper. It argued an instability which can lead formation roll-ups vortices play significant role attaining strength bonding. # 2003 Elsevier Science B.V. All rights reserved.

参考文章(18)
S. N. Bobrov, Structural changes in steel during abrasive wear Metal Science and Heat Treatment. ,vol. 35, pp. 136- 140 ,(1993) , 10.1007/BF00776837
H. El-Sobky, Mechanics of Explosive Welding Springer, Dordrecht. pp. 189- 217 ,(1983) , 10.1007/978-94-011-9751-9_6
Nikolai I. Nesterovich, Mikhail M. Shushpanov, Anatoly N. Papyrin, Anatoly P. Alkhimov, Vladimir F. Kosarev, Gas-dynamic spraying method for applying a coating U.S. Patent No.5,302,414. ,(1990)
A. O. Tokarev, Structure of aluminum powder coatings prepared by cold gasdynamic spraying Metal Science and Heat Treatment. ,vol. 38, pp. 136- 139 ,(1996) , 10.1007/BF01401446
T.H. Van Steenkiste, J.R. Smith, R.E. Teets, Aluminum coatings via kinetic spray with relatively large powder particles Surface and Coatings Technology. ,vol. 154, pp. 237- 252 ,(2002) , 10.1016/S0257-8972(02)00018-X
D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process Journal of Thermal Spray Technology. ,vol. 8, pp. 576- 582 ,(1999) , 10.1361/105996399770350278
V. Shukla, G.S. Elliott, B.H. Kear, Nanopowder deposition by supersonic rectangular jet impingement Journal of Thermal Spray Technology. ,vol. 9, pp. 394- 398 ,(2000) , 10.1361/105996300770349854
D. J. Steinberg, C. M. Lund, A constitutive model for strain rates from 10−4to 106s−1 Journal of Applied Physics. ,vol. 65, pp. 1528- 1533 ,(1989) , 10.1063/1.342968
D. J. Steinberg, S. G. Cochran, M. W. Guinan, A constitutive model for metals applicable at high-strain rate Journal of Applied Physics. ,vol. 51, pp. 1498- 1504 ,(1980) , 10.1063/1.327799
R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath, Impact of high velocity cold spray particles Journal of Thermal Spray Technology. ,vol. 8, pp. 559- 564 ,(1999) , 10.1361/105996399770350250