Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus

作者: Alanna Ebigbo , Robert Mendel , Andreas Probst , Johannes Manzeneder , Friederike Prinz

DOI: 10.1136/GUTJNL-2019-319460

关键词:

摘要: Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment BE, AI captures random images from camera livestream and provides global prediction (classification), as well dense (segmentation) differentiating accurately between normal BE early oesophageal adenocarcinoma (EAC). The showed accuracy 89.9% 14 cases neoplastic BE. This paper follows up prior publication application in evaluation BE.1 2 In initial publications, we developed computer-aided diagnosis (CAD) model demonstrated promising performance scores classification segmentation domains during assessment.1 However, these results were achieved optimal which may not mirror real-life situation sufficiently. To enable seamless integration AI-based image into clinical workflow, further to increase speed analysis for resolution prediction, shows color-coded spatial distribution probabilities.1 Still based convolutional neural nets (CNNs) residual net (ResNet) architecture DeepLab V.3+, state-of-the-art encoder–decoder network adapted.3 transfer system, capture card (Avermedia, Taiwan) plugged monitor. Online supplementary video 1 setting endoscopy room University Hospital Augsburg (figure 1). can be started at any time using either button keyboard or foot switch. clip examples …

参考文章(10)
Prateek Sharma, Jacques J.G.H.M. Bergman, Kenichi Goda, Mototsugu Kato, Helmut Messmann, Benjamin R. Alsop, Neil Gupta, Prashanth Vennalaganti, Matt Hall, Vani Konda, Ann Koons, Olga Penner, John R. Goldblum, Irving Waxman, Development and Validation of a Classification System to Identify High-Grade Dysplasia and Esophageal Adenocarcinoma in Barrett’s Esophagus Using Narrow-Band Imaging Gastroenterology. ,vol. 150, pp. 591- 598 ,(2016) , 10.1053/J.GASTRO.2015.11.037
Ashley H. Davis-Yadley, Kevin G. Neill, Mokenge P. Malafa, Luis R. Peña, Advances in the Endoscopic Diagnosis of Barrett Esophagus Cancer Control. ,vol. 23, pp. 67- 77 ,(2016) , 10.1177/107327481602300112
Thomas Lehmann, Walter Oberschelp, Erich Pelikan, Rudolf Repges, Bildverarbeitung für die Medizin Springer Berlin Heidelberg. ,(1997) , 10.1007/978-3-642-60487-4
Robert Mendel, Alanna Ebigbo, Andreas Probst, Helmut Messmann, Christoph Palm, Barrett’s Esophagus Analysis Using Convolutional Neural Networks Bildverarbeitung für die Medizin. pp. 80- 85 ,(2017) , 10.1007/978-3-662-54345-0_23
Helen G. Coleman, Shao-Hua Xie, Jesper Lagergren, The Epidemiology of Esophageal Adenocarcinoma Gastroenterology. ,vol. 154, pp. 390- 405 ,(2017) , 10.1053/J.GASTRO.2017.07.046
Alanna Ebigbo, Robert Mendel, Andreas Probst, Johannes Manzeneder, Luis Antonio de Souza Jr, João P Papa, Christoph Palm, Helmut Messmann, Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma Gut. ,vol. 68, pp. 1143- 1145 ,(2019) , 10.1136/GUTJNL-2018-317573
Josef Weismüller, René Thieme, Albrecht Hoffmeister, Tobias Weismüller, Ines Gockel, Barrett-Screening: Rationale, aktuelle Konzepte und Perspektiven Zeitschrift Fur Gastroenterologie. ,vol. 57, pp. 317- 326 ,(2019) , 10.1055/A-0832-2647
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal, Context Encoding for Semantic Segmentation 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7151- 7160 ,(2018) , 10.1109/CVPR.2018.00747
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam, Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation european conference on computer vision. pp. 833- 851 ,(2018) , 10.1007/978-3-030-01234-2_49
Josef Weismüller, René Thieme, Albrecht Hoffmeister, Tobias Weismüller, Ines Gockel, [Barrett-Screening: Rational, current concepts and perspectives]. Laryngo-rhino-otologie. ,vol. 99, pp. 214- 223 ,(2020) , 10.1055/A-1071-1863