Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α

作者: Aimee Y. Yu , Larissa A. Shimoda , Narayan V. Iyer , David L. Huso , Xing Sun

DOI: 10.1172/JCI5912

关键词:

摘要: Chronic hypoxia induces polycythemia, pulmonary hypertension, right ventricular hypertrophy, and weight loss. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to hypoxia, including erythropoietin, vascular endothelial growth factor, glycolytic enzymes. Expression the HIF-1α subunit increases exponentially as O2 concentration is decreased. Hif1a–/– mouse embryos with complete deficiency due homozygosity for a null allele at Hif1a locus die midgestation, multiple cardiovascular malformations mesenchymal cell death. Hif1a+/– heterozygotes develop normally are indistinguishable from Hif1a+/+ wild-type littermates when maintained under normoxic conditions. In this study, physiological mice exposed 10% one six weeks were analyzed. demonstrated significantly delayed development remodeling greater loss compared littermates. These results indicate partial has significant effects on systemic chronic hypoxia. J. Clin. Invest. 103:691–696 (1999)

参考文章(49)
L. C. Ou, S. Salceda, S. J. Schuster, L. M. Dunnack, T. Brink-Johnsen, J. Chen, J. C. Leiter, Polycythemic responses to hypoxia: molecular and genetic mechanisms of chronic mountain sickness Journal of Applied Physiology. ,vol. 84, pp. 1242- 1251 ,(1998) , 10.1152/JAPPL.1998.84.4.1242
B. Oštádal, J. Ressl, D. Urbanová, J. Widimský, J. Procházka, V. Pelouch, The effect of beta adrenergic blockade on pulmonary hypertension, right ventricular hypertrophy and polycythaemia, induced in rats by intermittent high altitude hypoxia. Basic Research in Cardiology. ,vol. 73, pp. 422- 432 ,(1978) , 10.1007/BF01906523
Yuan-Jue Zhu, Richard L. Kradin, Charles A. Hales, Robert D. Brandstetter, Impairment of hypoxic pulmonary artery remodeling by heparin in mice. The American review of respiratory disease. ,vol. 128, pp. 747- 751 ,(2015) , 10.1164/ARRD.1983.128.4.747
B. H. Jiang, G. L. Semenza, C. Bauer, H. H. Marti, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. American Journal of Physiology-cell Physiology. ,vol. 271, ,(1996) , 10.1152/AJPCELL.1996.271.4.C1172
Denzil Moraes, Joseph Loscalzo, Pulmonary hypertension: Newer concepts in diagnosis and management Clinical Cardiology. ,vol. 20, pp. 676- 682 ,(1997) , 10.1002/CLC.4960200804
M Tucci, K Nygard, BV Tanswell, HW Farber, DJ Hill, VK Han, Modulation of insulin-like growth factor (IGF) and IGF binding protein biosynthesis by hypoxia in cultured vascular endothelial cells. Journal of Endocrinology. ,vol. 157, pp. 13- 24 ,(1998) , 10.1677/JOE.0.1570013
E. Hoffman, H Reyes, F. Chu, F Sander, L. Conley, B. Brooks, O Hankinson, Cloning of a factor required for activity of the Ah (dioxin) receptor Science. ,vol. 252, pp. 954- 958 ,(1991) , 10.1126/SCIENCE.1852076
Jing Hu, Daryl J. Discher, Nanette H. Bishopric, Keith A. Webster, Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochemical and Biophysical Research Communications. ,vol. 245, pp. 894- 899 ,(1998) , 10.1006/BBRC.1998.8543
Yuxiang Liu, Shanna R. Cox, Toshisuke Morita, Stella Kourembanas, Hypoxia Regulates Vascular Endothelial Growth Factor Gene Expression in Endothelial Cells Identification of a 5′ Enhancer Circulation Research. ,vol. 77, pp. 638- 643 ,(1995) , 10.1161/01.RES.77.3.638