An adaptive octree finite element method for PDEs posed on surfaces

作者: Alexey Y. Chernyshenko , Maxim A. Olshanskii

DOI: 10.1016/J.CMA.2015.03.025

关键词:

摘要: Abstract The paper develops a finite element method for partial differential equations posed on hypersurfaces in R N , = 2 3 . uses traces of bulk functions surface embedded volumetric domain. space is defined an octree grid which locally refined or coarsened depending error indicators and estimated values the curvatures. cartesian structure mesh leads to easy efficient adaptation process, while trace makes fitting unnecessary. number degrees freedom involved computations consistent with two-dimension nature PDEs. No parametrization required; it can be given implicitly by level set function. In practice, variant marching cubes used recover second order accuracy. We prove optimal accuracy H 1 L norms problem smooth solution quasi-uniform refinement. Experiments less regular problems demonstrate convergence respect freedom, if based appropriate indicator. shows results numerical experiments variety geometries problems, including advection–diffusion surfaces. Analysis suggest that combination adaptive meshes unfitted (trace) elements provide simple, efficient, reliable tool treatment PDEs

参考文章(40)
Gerhard Dziuk, Finite Elements for the Beltrami operator on arbitrary surfaces Lecture Notes in Mathematics. pp. 142- 155 ,(1988) , 10.1007/BFB0082865
Peter Hansbo, Mats G. Larson, Sara Zahedi, Characteristic cut finite element methods for convection–diffusion problems on time dependent surfaces Computer Methods in Applied Mechanics and Engineering. ,vol. 293, pp. 431- 461 ,(2015) , 10.1016/J.CMA.2015.05.010
A. Bonito, R.H. Nochetto, M.S. Pauletti, Dynamics of Biomembranes: Effect of the Bulk Fluid Mathematical Modelling of Natural Phenomena. ,vol. 6, pp. 25- 43 ,(2011) , 10.1051/MMNP/20116502
Klaus Deckelnick, Charles M. Elliott, Thomas Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations SIAM Journal on Numerical Analysis. ,vol. 52, pp. 2137- 2162 ,(2014) , 10.1137/130948641
Stéphane Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries Journal of Computational Physics. ,vol. 190, pp. 572- 600 ,(2003) , 10.1016/S0021-9991(03)00298-5
Frank Losasso, Frédéric Gibou, Ron Fedkiw, Simulating water and smoke with an octree data structure ACM Transactions on Graphics. ,vol. 23, pp. 457- 462 ,(2004) , 10.1145/1015706.1015745
Anita Hansbo, Peter Hansbo, Mats G. Larson, A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD Mathematical Modelling and Numerical Analysis. ,vol. 37, pp. 495- 514 ,(2003) , 10.1051/M2AN:2003039
Maxim A. Olshanskii, Arnold Reusken, Jörg Grande, A Finite Element Method for Elliptic Equations on Surfaces SIAM Journal on Numerical Analysis. ,vol. 47, pp. 3339- 3358 ,(2009) , 10.1137/080717602
Maxim A. Olshanskii, Arnold Reusken, ERROR ANALYSIS OF A SPACE-TIME FINITE ELEMENT METHOD FOR SOLVING PDES ON EVOLVING SURFACES ∗ SIAM Journal on Numerical Analysis. ,vol. 52, pp. 2092- 2120 ,(2014) , 10.1137/130936877
Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, Guillermo Sapiro, Variational Problems and Partial Differential Equations on Implicit Surfaces Journal of Computational Physics. ,vol. 174, pp. 759- 780 ,(2001) , 10.1006/JCPH.2001.6937