Converting triangulations to quadrangulations

作者: Suneeta Ramaswami , Pedro Ramos , Godfried Toussaint

DOI: 10.1016/S0925-7721(97)00019-9

关键词:

摘要: Abstract We study the problem of converting triangulated domains to quadrangulations, under a variety constraints. obtain characterizations for when triangulation (of some structure such as polygon, set points, line segments or planar subdivision) admits quadrangulation without use Steiner with bounded number points. also investigate effect demanding that points be added in interior exterior simple polygon and propose efficient algorithms accomplishing these tasks. For example, we give linear-time method quadrangulates minimum outer required triangulation. show this can at most ⌊ n 3 ⌋ , there exist polygons require many n-gon may quadrangulated 4 inside one outside. This algorithm allows us obtain, linear time, quadrangulations from general (such triangulations holes, segments)

参考文章(31)
Jörg-Rüdiger Sack, Godfried T. Toussaint, Guard Placement in Rectilinear Polygons Machine Intelligence and Pattern Recognition. ,vol. 6, pp. 153- 175 ,(1988) , 10.1016/B978-0-444-70467-2.50016-3
Godfried Toussaint, Quadrangulations of Planar Sets workshop on algorithms and data structures. pp. 218- 227 ,(1995) , 10.1007/3-540-60220-8_64
Esther M. Arkin, Martin Held, Joseph S. B. Mitchell, Steven S. Skiena, Hamiltonian triangulations for fast rendering Algorithms — ESA '94. pp. 36- 47 ,(1994) , 10.1007/BFB0049395
Prosenjit Bose, Godfried Toussaint, No Quadrangulation is Extremely Odd international symposium on algorithms and computation. pp. 372- 381 ,(1995) , 10.1007/BFB0015443
MARSHALL BERN, DAVID EPPSTEIN, MESH GENERATION AND OPTIMAL TRIANGULATION WORLD SCIENTIFIC. pp. 23- 90 ,(1992) , 10.1142/9789812831699_0003
James B. Orlin, Thomas L. Magnanti, Ravindra K. Ahuja, Network Flows: Theory, Algorithms, and Applications ,(1993)
Anna Lubiw, Decomposing polygonal regions into convex quadrilaterals symposium on computational geometry. pp. 97- 106 ,(1985) , 10.1145/323233.323247
Karl Zeller, Walter Schempp, Multivariate Approximation Theory IV ,(1989)
K. Ho-Le, Finite element mesh generation methods: a review and classification Computer-aided Design. ,vol. 20, pp. 27- 38 ,(1988) , 10.1016/0010-4485(88)90138-8