On Convex Quadrangulations of Point Sets on the Plane

作者: V. M. Heredia , J. Urrutia

DOI: 10.1007/978-3-540-70666-3_5

关键词:

摘要: Let Pn be a set of n points on the plane in general position, ≥ 4. A convex quadrangulation is partitioning hull Conv(Pn) into quadrilaterals such that their vertices are elements Pn, and no element lies interior any quadrilateral. It straightforward to see if P admits quadrilaterization, its must have an even number vertices. In [6] it was proved has points, then by adding at most •n/• Steiner hull, we can always obtain point quadrangulation. The authors also show n/• sometimes necessary. this paper how improve upper lower bounds +2 respectively. fact, prove bound n, with long unenlightening case analysis (over fifty cases!) + 2, for details [9].

参考文章(14)
Atsuhiro Nakamoto, Alberto Márquez Pérez, Jesús Valenzuela Muñoz, María del Carmen Cortés Parejo, Quadrangulations and 2-Colorations EuroCG. pp. 65- 68 ,(2005)
J.-R. Sack, J. Urrutia, Handbook of computational geometry North-Holland Publishing Co.. ,(2000)
Godfried Toussaint, Quadrangulations of Planar Sets workshop on algorithms and data structures. pp. 218- 227 ,(1995) , 10.1007/3-540-60220-8_64
Steven Fortune, Voronoi Diagrams and Delaunay Triangulations Handbook of Discrete and Computational Geometry, Second Edition. pp. 377- 388 ,(2004) , 10.1201/9781420035315.CH23
MARSHALL BERN, DAVID EPPSTEIN, MESH GENERATION AND OPTIMAL TRIANGULATION WORLD SCIENTIFIC. pp. 23- 90 ,(1992) , 10.1142/9789812831699_0003
Michael I. Shamos, Franco P. Preparata, Computational Geometry: An Introduction ,(1978)
Victor Alvarez, Toshinori Sakai, Jorge Urrutia, Bichromatic Quadrangulations with Steiner Points Graphs and Combinatorics. ,vol. 23, pp. 85- 98 ,(2007) , 10.1007/S00373-007-0715-2
David Bremner, Ferran Hurtado, Suneeta Ramaswami, Vera Sacristán, Small Strictly Convex Quadrilateral Meshes of Point Sets Algorithmica. ,vol. 38, pp. 317- 339 ,(2004) , 10.1007/S00453-003-1062-1
Suneeta Ramaswami, Pedro Ramos, Godfried Toussaint, Converting triangulations to quadrangulations Computational Geometry: Theory and Applications. ,vol. 9, pp. 257- 276 ,(1998) , 10.1016/S0925-7721(97)00019-9
Prosenjit Bose, Godfried Toussaint, Characterizing and efficiently computing quadrangulations of planar point sets Computer Aided Geometric Design. ,vol. 14, pp. 763- 785 ,(1997) , 10.1016/S0167-8396(97)00013-7