Quadrangulations on 3-Colored Point Sets with Steiner Points and Their Winding Numbers

作者: Sho Kato , Ryuichi Mori , Atsuhiro Nakamoto

DOI: 10.1007/S00373-013-1346-4

关键词:

摘要: Let P be a point set on the plane, and consider whether is quadrangulatable, that is, there exists 2-connected plane graph G with each edge straight segment such V(G) = P, outer cycle of coincides convex hull Conv(P) finite face quadrilateral. It easy to see it possible if only an even number points lie Conv(P). Hence we give k-coloring same problem, avoiding edges joining two vertices color. In this case, always assume lying any consecutive have distinct colors. However, for every k ? 2, k-colored non-quadrangulatable P. So introduce Steiner points, which can put in position interior may colored by When Alvarez et al. proved consists $${\frac{n}{2}}$$ n 2 red blue general position, then adding Q $${|Q| \leq \lfloor \frac{n-2}{6} \rfloor + \frac{n}{4} +1}$$ | ≤ - 6 4 1 , but 3-colored no matter how many are added. paper, define winding prove added quadrangulatable zero. \frac{7n+34m-48}{18}}$$ 7 34 m 48 18 where |P| 2m.

参考文章(12)
Atsuhiro Nakamoto, Alberto Márquez Pérez, Jesús Valenzuela Muñoz, María del Carmen Cortés Parejo, Quadrangulations and 2-Colorations EuroCG. pp. 65- 68 ,(2005)
V. M. Heredia, J. Urrutia, On Convex Quadrangulations of Point Sets on the Plane Lecture Notes in Computer Science. pp. 38- 46 ,(2005) , 10.1007/978-3-540-70666-3_5
David Bremner, Ferran Hurtado, Suneeta Ramaswami, Vera Sacristán, Small Convex Quadrangulations of Point Sets international symposium on algorithms and computation. pp. 623- 635 ,(2001) , 10.1007/3-540-45678-3_53
Godfried Toussaint, Quadrangulations of Planar Sets workshop on algorithms and data structures. pp. 218- 227 ,(1995) , 10.1007/3-540-60220-8_64
Atsuhiro Nakamoto, Katsuhiro Ota, Joan Hutchinson, Seiya Negam, Dan Archdeacon, Chromatic numbers of quadrangulations on closed surfaces Journal of Graph Theory. ,vol. 37, pp. 100- 114 ,(2001) , 10.1002/JGT.V37:2
D. A. Youngs, 4-chromatic projective graphs Journal of Graph Theory. ,vol. 21, pp. 219- 227 ,(1996) , 10.1002/(SICI)1097-0118(199602)21:2<219::AID-JGT12>3.0.CO;2-E
Victor Alvarez, Toshinori Sakai, Jorge Urrutia, Bichromatic Quadrangulations with Steiner Points Graphs and Combinatorics. ,vol. 23, pp. 85- 98 ,(2007) , 10.1007/S00373-007-0715-2
David Bremner, Ferran Hurtado, Suneeta Ramaswami, Vera Sacristán, Small Strictly Convex Quadrilateral Meshes of Point Sets Algorithmica. ,vol. 38, pp. 317- 339 ,(2004) , 10.1007/S00453-003-1062-1
Suneeta Ramaswami, Pedro Ramos, Godfried Toussaint, Converting triangulations to quadrangulations Computational Geometry: Theory and Applications. ,vol. 9, pp. 257- 276 ,(1998) , 10.1016/S0925-7721(97)00019-9
Prosenjit Bose, Godfried Toussaint, Characterizing and efficiently computing quadrangulations of planar point sets Computer Aided Geometric Design. ,vol. 14, pp. 763- 785 ,(1997) , 10.1016/S0167-8396(97)00013-7