Revisiting the radical copolymerization of vinylidene fluoride with perfluoro-3,6-dioxa-4-methyl-7-octene sulfonyl fluoride for proton conducting membranes

作者: Maxime Colpaert , Marta Zatoń , Gérald Lopez , Deborah J Jones , Bruno Améduri

DOI: 10.1016/J.IJHYDENE.2018.03.153

关键词:

摘要: Abstract The radical copolymerizations of vinylidene fluoride (VDF) with perfluoro-3,6-dioxa-4-methyl-7-octene sulfonyl (PFSVE) and hPFSVE (hydrolyzed form PFSVE) are presented. resulting poly(VDF-co-PFSVE) random copolymers were hydrolyzed then cast into proton conducting membranes. Another strategy was first to hydrolyze PFSVE under basic conditions, copolymerize it VDF. copolymerization VDF led homogeneous in contrast that hPFSVE, as assessed by 19F NMR spectroscopy. thermal electrochemical properties all determined. As expected, the stability bearing -SO2F groups higher than containing -SO3H moieties. Membranes processed casting displayed water uptake ca. 40%, ion exchange capacity 1.25 meq.g−1 conductivities up 28 mS cm−1 at 80 °C 100% relative humidity.

参考文章(27)
M. Yoshitake, A. Watakabe, Perfluorinated Ionic Polymers for PEFCs (Including Supported PFSA) Advances in Polymer Science. ,vol. 215, pp. 127- 155 ,(2008) , 10.1007/12_2008_154
Daniel A. Hercules, Darryl D. DesMarteau, Richard E. Fernandez, James L. Clark, Joseph S. Thrasher, Evolution of Academic Barricades for the Use of Tetrafluoroethylene (TFE) in the Preparation of Fluoropolymers Handbook of Fluoropolymer Science and Technology. pp. 413- 431 ,(2014) , 10.1002/9781118850220.CH18
Scott Hardman, Eric Shiu, Robert Steinberger-Wilckens, Changing the fate of Fuel Cell Vehicles: Can lessons be learnt from Tesla Motors? International Journal of Hydrogen Energy. ,vol. 40, pp. 1625- 1638 ,(2015) , 10.1016/J.IJHYDENE.2014.11.149
Anita Skulimowska, Marc Dupont, Marta Zaton, Svein Sunde, Luca Merlo, Deborah J. Jones, Jacques Rozière, Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst International Journal of Hydrogen Energy. ,vol. 39, pp. 6307- 6316 ,(2014) , 10.1016/J.IJHYDENE.2014.02.082
A. S. Aricò, A. Di Blasi, G. Brunaccini, F. Sergi, G. Dispenza, L. Andaloro, M. Ferraro, V. Antonucci, P. Asher, S. Buche, D. Fongalland, G. A. Hards, J. D. B. Sharman, A. Bayer, G. Heinz, N. Zandonà, R. Zuber, M. Gebert, M. Corasaniti, A. Ghielmi, D. J. Jones, High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane Fuel Cells. ,vol. 10, pp. 1013- 1023 ,(2010) , 10.1002/FUCE.201000031
Petya Petrova, Bruno Ameduri, Gerard Bauduin, Bernard Boutevin, Georges Kostov, Synthesis and Polymerization of Fluorinated Monomers Bearing a Reactive Lateral Group. 9.†Bulk Copolymerization of Vinylidene Fluoride with 4,5,5-Trifluoro-4-ene Pentyl Acetate Macromolecules. ,vol. 32, pp. 4544- 4550 ,(1999) , 10.1021/MA9820220
A. Ghielmi, P. Vaccarono, C. Troglia, V. Arcella, Proton exchange membranes based on the short-side-chain perfluorinated ionomer Journal of Power Sources. ,vol. 145, pp. 108- 115 ,(2005) , 10.1016/J.JPOWSOUR.2004.12.068
L. Sauguet, B. Ameduri, B. Boutevin, Fluorinated, crosslinkable terpolymers based on vinylidene fluoride and bearing sulfonic acid side groups for fuel-cell membranes Journal of Polymer Science Part A. ,vol. 44, pp. 4566- 4578 ,(2006) , 10.1002/POLA.21551
Kui Xu, Chalathorn Chanthad, Michael A. Hickner, Qing Wang, Highly selective proton conductive networks based on chain-end functionalized polymers with perfluorosulfonate side groups Journal of Materials Chemistry. ,vol. 20, pp. 6291- 6298 ,(2010) , 10.1039/C000044B
Susanta Mitra, Afshin Ghanbari-Siahkali, Peter Kingshott, S�ren Hvilsted, Kristoffer Almdal, Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment Journal of Polymer Science Part A. ,vol. 42, pp. 6216- 6229 ,(2004) , 10.1002/POLA.20473