Complex-ordered patterns in shaken convection.

作者: Jeffrey L. Rogers , Werner Pesch , Oliver Brausch , Michael F. Schatz

DOI: 10.1103/PHYSREVE.71.066214

关键词:

摘要: We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed distinct spatial scales, each displaying different temporal dependence. The system is fluid layer experiencing forcing from both vertical temperature difference time-periodic oscillations. Depending on the parameters these mechanisms produce motion with either harmonic or subharmonic response. Over parameter range where have comparable influence scales associated responses found to coexist, resulting complex, yet highly ordered patterns. Phase diagrams this region reported criteria define as quasiperiodic crystals superlattices presented. satisfy four-mode (resonant tetrad) conditions. qualitative between present formation mechanism resonant triads ubiquitously used explain complex-ordered other nonequilibrium systems discussed. only exception quantitative agreement our analysis based Boussinesq equations laboratory investigations be result breaking symmetry small near onset.

参考文章(52)
Ulrike E. Volmar, Hanns Walter Müller, Quasiperiodic patterns in Rayleigh-Benard convection under gravity modulation Physical Review E. ,vol. 56, pp. 5423- 5430 ,(1997) , 10.1103/PHYSREVE.56.5423
M. WESTERBURG, F. H. BUSSE, Finite-amplitude convection in the presence of finitely conducting boundaries Journal of Fluid Mechanics. ,vol. 432, pp. 351- 367 ,(2001) , 10.1017/S002211200000327X
E. Pampaloni, S. Residori, S. Soria, F. T. Arecchi, Phase Locking in Nonlinear Optical Patterns Physical Review Letters. ,vol. 78, pp. 1042- 1045 ,(1997) , 10.1103/PHYSREVLETT.78.1042
W. Pesch, Complex spatiotemporal convection patterns Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 6, pp. 348- 357 ,(1996) , 10.1063/1.166194
R. Clever, G. Schubert, F. H. Busse, Three‐dimensional oscillatory convection in a gravitationally modulated fluid layer Physics of Fluids A: Fluid Dynamics. ,vol. 5, pp. 2430- 2437 ,(1993) , 10.1063/1.858755
A. Kudrolli, J. P. Gollub, J. P. Gollub, B. Pier, Superlattice patterns in surface waves Physica D: Nonlinear Phenomena. ,vol. 123, pp. 99- 111 ,(1998) , 10.1016/S0167-2789(98)00115-8
Christopher W. Meyer, David S. Cannell, Guenter Ahlers, Hexagonal and roll flow patterns in temporally modulated Rayleigh-Bénard convection. Physical Review A. ,vol. 45, pp. 8583- 8604 ,(1992) , 10.1103/PHYSREVA.45.8583
A.M. Rucklidge, W.J. Rucklidge, Convergence properties of the 8, 10 and 12 mode representations of quasipatterns Physica D: Nonlinear Phenomena. ,vol. 178, pp. 62- 82 ,(2003) , 10.1016/S0167-2789(02)00792-3
F. H. Busse, R. M. Clever, Asymmetric Squares as an Attracting Set in Rayleigh-Bénard Convection Physical Review Letters. ,vol. 81, pp. 341- 344 ,(1998) , 10.1103/PHYSREVLETT.81.341
R. Herrero, E. Große Westhoff, A. Aumann, T. Ackemann, Yu. A. Logvin, W. Lange, Twelvefold Quasiperiodic Patterns in a Nonlinear Optical System with Continuous Rotational Symmetry Physical Review Letters. ,vol. 82, pp. 4627- 4630 ,(1999) , 10.1103/PHYSREVLETT.82.4627