Kernels of seminorms in constructive analysis

作者: Douglas S. Bridges , Nicholas Dudley Ward

DOI: 10.1016/S0304-3975(01)00067-6

关键词:

摘要: The kernel of a seminorm on normed space is examined constructively--that is, using intuitionistic logic. In particular, conditions are given that ensure (i) the located and (ii) nontrivial.

参考文章(8)
Michael J. Beeson, Foundations of Constructive Mathematics Springer Berlin Heidelberg. ,(1985) , 10.1007/978-3-642-68952-9
Douglas Bridges, Fred Richman, Varieties of Constructive Mathematics ,(1987)
Hajime Ishihara, Constructive compact operators on a Hilbert space Annals of Pure and Applied Logic. ,vol. 52, pp. 31- 37 ,(1991) , 10.1016/0168-0072(91)90037-M
Douglas Bridges, Hajime Ishihara, Constructive closed range and open mapping theorems Indagationes Mathematicae. ,vol. 11, pp. 509- 516 ,(2000) , 10.1016/S0019-3577(00)80019-1
Douglas Bridges, Hajime Ishihara, A Definitive Constructive Open Mapping Theorem Mathematical Logic Quarterly. ,vol. 44, pp. 545- 552 ,(1998) , 10.1002/MALQ.19980440413
Douglas S. Bridges, Constructive mathematics: a foundation for computable analysis Theoretical Computer Science. ,vol. 219, pp. 95- 109 ,(1999) , 10.1016/S0304-3975(98)00285-0
Peter Schuster, Douglas Bridges, Fred Richman, ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS Department of Computer Science, The University of Auckland, New Zealand. ,(1997)
Douglas Bridges, Hajime Ishihara, Bas Spitters, Locating the range of an operator with an adjoint Indagationes Mathematicae. ,vol. 13, pp. 433- 440 ,(2002) , 10.1016/S0019-3577(02)80024-6