The Treatment of Missing Values and its Effect on Classifier Accuracy

作者: Edgar Acuña , Caroline Rodriguez

DOI: 10.1007/978-3-642-17103-1_60

关键词:

摘要: … Abstract: The presence of missing values in a dataset can affect the performance of a classifier constructed using that dataset as a training sample. Several methods have been …

参考文章(12)
Robert Tibshirani, Trevor Hastie, Gavin Sherlock, David Botstein, Patrick Brown, Michael Eisen, Imputing Missing Data for Gene Expression Arrays ,(2001)
D Kasprzak, G Kalton, The treatment of missing survey data Survey Methodology. ,vol. 12, pp. 1- 16 ,(1986)
Roderick Little, Donald Rubin, Statistical Analysis with Missing Data, Second Edition Wiley Series in Probability and Statistics. ,(2019) , 10.1002/9781119482260
A.L. Bello, Imputation techniques in regression analysis: looking closely at their implementation Computational Statistics & Data Analysis. ,vol. 20, pp. 45- 57 ,(1995) , 10.1016/0167-9473(94)00024-D
John K. Dixon, Pattern Recognition with Partly Missing Data IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 9, pp. 617- 621 ,(1979) , 10.1109/TSMC.1979.4310090
Roderick JA Little, Donald B Rubin, None, Statistical Analysis with Missing Data ,(1987)
Troyanskaya Olga, Cantor Michael, Shelock Gavin, Brown Pat, Hastie Trevor, Tibshirani Robert, Botstein David, None, Missing value estimation methods for DNA microarrays. Bioinformatics. ,vol. 17, pp. 520- 525 ,(2001) , 10.1093/BIOINFORMATICS/17.6.520
Jerzy W. Grzymala-Busse, Ming Hu, A Comparison of Several Approaches to Missing Attribute Values in Data Mining Lecture Notes in Computer Science. pp. 378- 385 ,(2000) , 10.1007/3-540-45554-X_46