Numerical investigation on the stability of singular driven cavity flow

作者: F. Auteri , N. Parolini , L. Quartapelle

DOI: 10.1006/JCPH.2002.7145

关键词:

摘要: By applying the singularity subtraction technique to unsteady driven cavity problem, stability of impulsively started flow is investigated, without smoothing corner singularity. A second-order spectral projection method allows localization critical Reynolds number for first Hopf bifurcation in interval [8017.6, 8018.8).

参考文章(28)
Mitutosi Kawaguti, Numerical Solution of the Navier-Stokes Equations for the Flow in a Two-Dimensional Cavity Journal of the Physical Society of Japan. ,vol. 16, pp. 2307- 2315 ,(1961) , 10.1143/JPSJ.16.2307
Murli M. Gupta, Ram P. Manohar, Ben Noble, Nature of viscous flows near sharp corners Computers & Fluids. ,vol. 9, pp. 379- 388 ,(1981) , 10.1016/0045-7930(81)90009-8
PATRICK LE QUÉRÉ, MASUD BEHNIA, From onset of unsteadiness to chaos in a differentially heated square cavity Journal of Fluid Mechanics. ,vol. 359, pp. 81- 107 ,(1998) , 10.1017/S0022112097008458
K Gustafson, K Halasi, Vortex dynamics of cavity flows Journal of Computational Physics. ,vol. 64, pp. 279- 319 ,(1986) , 10.1016/0021-9991(86)90035-5
Natarajan Ramanan, George M. Homsy, Linear stability of lid‐driven cavity flow Physics of Fluids. ,vol. 6, pp. 2690- 2701 ,(1994) , 10.1063/1.868158
F. Auteri, L. Quartapelle, L. Vigevano, Accurate ω-ψ spectral solution of the singular driven cavity problem Journal of Computational Physics. ,vol. 180, pp. 597- 615 ,(2002) , 10.1006/JCPH.2002.7108
U Ghia, K.N Ghia, C.T Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method Journal of Computational Physics. ,vol. 48, pp. 387- 411 ,(1982) , 10.1016/0021-9991(82)90058-4
R. Glowinski, H. B. Keller, L. Reinhart, Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems SIAM Journal on Scientific and Statistical Computing. ,vol. 6, pp. 793- 832 ,(1985) , 10.1137/0906055