Nuclear dimension and \mathcal Z-stability

作者: Wilhelm Winter , Stuart White , Yasuhiko Sato

DOI: 10.1007/S00222-015-0580-1

关键词:

摘要: Simple, separable, unital, monotracial and nuclear C ∗ -algebras are shown to have finite dimension whenever they absorb the Jiang-Su algebraZ tensorially.ThiscompletestheproofoftheToms-Winterconjecture in unique trace case. ThestructuretheoryofsimplenuclearC -algebrasiscurrentlyundergoingrev- olutionary progress, driven by discovery of regularity properties various flavours: topological, functional analytic algebraic. Despite diverse nature these properties, all satisfied those classes which been successfully classified K-theoretic data, fail spectacularly for "exotic" algebras (30,40) provide counterexamples Elliott's classification conjecture. The observation that

参考文章(60)
M. Rørdam, Classification of Nuclear, Simple C*-algebras Springer Berlin Heidelberg. pp. 1- 145 ,(2002) , 10.1007/978-3-662-04825-2_1
Allan M. Sinclair, Roger R. Smith, Finite Von Neumann Algebras and Masas ,(2008)
Eberhard Kirchberg, Central Sequences in C*-Algebras and Strongly Purely Infinite Algebras Springer Berlin Heidelberg. pp. 175- 231 ,(2006) , 10.1007/978-3-540-34197-0_10
Bruce Blackadar, K-Theory for Operator Algebras ,(1986)
Masamichi Takesaki, Theory of Operator Algebras II ,(1979)
Uffe Haagerup, Quasitraces on Exact $C^\ast$-Algebras are Traces arXiv: Operator Algebras. ,vol. 858, pp. 106- 129 ,(1994)
Wilhelm Winter, Strongly self-absorbing C*-algebras are Z-stable arXiv: Operator Algebras. ,(2009)