Pattern formation in two-frequency forced parametric waves

作者: H. Arbell , J. Fineberg

DOI: 10.1103/PHYSREVE.65.036224

关键词:

摘要: We present an experimental investigation of superlattice patterns generated on the surface a fluid via parametric forcing with two commensurate frequencies. The spatiotemporal behavior four qualitatively different types is described in detail. These states are number three-wave resonant interactions. They occur either as symmetry-breaking bifurcations hexagonal composed single unstable mode or nonlinear interactions between primary modes by A coherent picture these together phase space which they appear presented. In addition, we describe new four-wave that arise when symmetry constraints rule out resonances.

参考文章(63)
S. Douady, Experimental study of the Faraday instability Journal of Fluid Mechanics. ,vol. 221, pp. 383- 409 ,(1990) , 10.1017/S0022112090003603
Doug Binks, Willem van de Water, Nonlinear pattern formation of Faraday waves Physical Review Letters. ,vol. 78, pp. 4043- 4046 ,(1997) , 10.1103/PHYSREVLETT.78.4043
Krishna Kumar, Kapil M. S. Bajaj, Competing patterns in the Faraday experiment Physical Review E. ,vol. 52, pp. R4606- R4609 ,(1995) , 10.1103/PHYSREVE.52.R4606
Eric Bosch, Willem van de Water, Spatiotemporal intermittency in the Faraday experiment. Physical Review Letters. ,vol. 70, pp. 3420- 3423 ,(1993) , 10.1103/PHYSREVLETT.70.3420
B. J. Gluckman, P. Marcq, J. Bridger, J. P. Gollub, Time averaging of chaotic spatiotemporal wave patterns. Physical Review Letters. ,vol. 71, pp. 2034- 2037 ,(1993) , 10.1103/PHYSREVLETT.71.2034
A. Kudrolli, J. P. Gollub, Localized spatiotemporal chaos in surface waves. Physical Review E. ,vol. 54, ,(1996) , 10.1103/PHYSREVE.54.R1052
L Daudet, V Ego, S Manneville, J Bechhoefer, Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability arXiv: Pattern Formation and Solitons. ,(1995) , 10.1209/0295-5075/32/4/005
WENBIN ZHANG, JORGE VIÑALS, Pattern formation in weakly damped parametric surface waves driven by two frequency components Journal of Fluid Mechanics. ,vol. 341, pp. 225- 244 ,(1997) , 10.1017/S0022112097005387