Nitric Oxide Evokes an Adaptive Response to Oxidative Stress by Arresting Respiration

作者: Maroof Husain , Travis J. Bourret , Bruce D. McCollister , Jessica Jones-Carson , James Laughlin

DOI: 10.1074/JBC.M708845200

关键词:

摘要: Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components electron transport chain (ETC). Basal levels oxidative stress can dramatically rise upon activation NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery low-molecular-weight thiol scavengers, legion detoxifying catalases, peroxidases, superoxide dismutases, as well variety repair systems. We present herein blockage bacterial respiration novel strategy that helps intracellular pathogen Salmonella survive extreme conditions. A strain bearing mutations in complex I NADH dehydrogenases is refractory to early antimicrobial activity IFNγ-activated macrophages. The ability NADH-rich, I-deficient associated with resistance peroxynitrite (ONOO-) hydrogen peroxide (H2O2). Inhibition nitric oxide (NO) also triggered protective adaptive response against stress. Expression NDH-II dehydrogenase decreases levels, thereby abrogating NO-adapted H2O2. antagonizes hydroxyl radical (OH·) generated classical Fenton chemistry or spontaneous decomposition peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify accumulation following NO-mediated inhibition Salmonella's ETC antioxidant strategy. NO-dependent arrest may help mitochondria plethora cope engendered situations diverse aerobic respiration, ischemia reperfusion, inflammation.

参考文章(53)
Sung Oog Kim, Kunal Merchant, Raphael Nudelman, Wayne F. Beyer, Teresa Keng, Joseph DeAngelo, Alfred Hausladen, Jonathan S. Stamler, OxyR Cell. ,vol. 109, pp. 383- 396 ,(2002) , 10.1016/S0092-8674(02)00723-7
Michael J. Miller, Robert B. Gennis, Purification and reconstitution of the cytochrome d terminal oxidase complex from Escherichia coli. Methods in Enzymology. ,vol. 126, pp. 87- 94 ,(1986) , 10.1016/S0076-6879(86)26011-5
C D Georgiou, T J Dueweke, R B Gennis, Regulation of expression of the cytochrome d terminal oxidase in Escherichia coli is transcriptional Journal of Bacteriology. ,vol. 170, pp. 961- 966 ,(1988) , 10.1128/JB.170.2.961-966.1988
G Storz, F S Jacobson, L A Tartaglia, R W Morgan, L A Silveira, B N Ames, An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. Journal of Bacteriology. ,vol. 171, pp. 2049- 2055 ,(1989) , 10.1128/JB.171.4.2049-2055.1989
Ruslana Bryk, Patrick Griffin, Carl Nathan, Peroxynitrite reductase activity of bacterial peroxiredoxins Nature. ,vol. 407, pp. 211- 215 ,(2000) , 10.1038/35025109
R Radi, T P Cosgrove, J S Beckman, B A Freeman, Peroxynitrite-induced luminol chemiluminescence Biochemical Journal. ,vol. 290, pp. 51- 57 ,(1993) , 10.1042/BJ2900051
Nikolai V. Gorbunov, Jack C. Yalowich, Arunasri Gaddam, Padmakumari Thampatty, Vladimir B. Ritov, Elena R. Kisin, Nabil M. Elsayed, Valerian E. Kagan, Nitric oxide prevents oxidative damage produced by tert-butyl hydroperoxide in erythroleukemia cells via nitrosylation of heme and non-heme iron. Electron paramagnetic resonance evidence Journal of Biological Chemistry. ,vol. 272, pp. 12328- 12341 ,(1997) , 10.1074/JBC.272.19.12328