Detecting Slow Wave Sleep via One or Two Channels of EEG/EOG Signals

作者: Liang-Wen Hang , Bo-Lin Su , Chen-Wen Yen

DOI: 10.12720/IJSPS.1.1.84-88

关键词:

摘要:  Abstract—This work develops a number of automatic slow wave sleep (SWS) detection methods that employ only one or two channels EOG/EEG signals. In addition to the reduction signal channels, distinct feature proposed approach is introduction new set can make insensitive interpersonal differences physiological The tested subjects include 265 and 947 persons underwent full overnight polysomnography from different centers. With center as training 147 other validation set, first part our experiments yields SWS results Kappa coefficients 0.72-0.78, sensitivity 0.77-0.90 positive predictive value 0.73-0.82. Using subject dataset, second compares relative merits investigates impacts ratio severity apnea on performances methods. Finally, suggest quality great importance for development accurate

参考文章(27)
Elliott Kyung Lee, Alan B Douglass, Sleep in psychiatric disorders: where are we now? The Canadian Journal of Psychiatry. ,vol. 55, pp. 403- 412 ,(2010) , 10.1177/070674371005500703
E. Tasali, R. Leproult, D. A. Ehrmann, E. Van Cauter, Slow-wave sleep and the risk of type 2 diabetes in humans Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 1044- 1049 ,(2008) , 10.1073/PNAS.0706446105
Jussi Virkkala, Joel Hasan, Alpo Värri, Sari-Leena Himanen, Kiti Müller, Automatic detection of slow wave sleep using two channel electro-oculography. Journal of Neuroscience Methods. ,vol. 160, pp. 171- 177 ,(2007) , 10.1016/J.JNEUMETH.2006.08.002
Urszula Malinowska, Hubert Klekowicz, Andrzej Wakarow, Szymon Niemcewicz, Piotr J. Durka, Fully Parametric Sleep Staging Compatible with the Classical Criteria Neuroinformatics. ,vol. 7, pp. 245- 253 ,(2009) , 10.1007/S12021-009-9059-9
R.J. Croft, R.J. Barry, Removal of ocular artifact from the EEG: a review. Neurophysiologie Clinique-clinical Neurophysiology. ,vol. 30, pp. 5- 19 ,(2000) , 10.1016/S0987-7053(00)00055-1
Jussi Virkkala, Joel Hasan, Alpo Värri, Sari-Leena Himanen, Kiti Müller, Automatic sleep stage classification using two-channel electro-oculography. Journal of Neuroscience Methods. ,vol. 166, pp. 109- 115 ,(2007) , 10.1016/J.JNEUMETH.2007.06.016
R. Agarwal, J. Gotman, Computer-assisted sleep staging IEEE Transactions on Biomedical Engineering. ,vol. 48, pp. 1412- 1423 ,(2001) , 10.1109/10.966600
Hae-Jeong Park, Jung-Su Oh, Do-Un Jeong, Kwang-Suk Park, Automated sleep stage scoring using hybrid rule- and case-based reasoning Computers and Biomedical Research. ,vol. 33, pp. 330- 349 ,(2000) , 10.1006/CBMR.2000.1549
M. Emin Tagluk, Necmettin Sezgin, Mehmet Akin, Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. Journal of Medical Systems. ,vol. 34, pp. 717- 725 ,(2010) , 10.1007/S10916-009-9286-5
Salih Güneş, Kemal Polat, Şebnem Yosunkaya, Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting Expert Systems With Applications. ,vol. 37, pp. 7922- 7928 ,(2010) , 10.1016/J.ESWA.2010.04.043