How does the atmospheric variability drive the aerosol residence time in the Arctic region

作者: M Ménégoz , A Voldoire , H Teyssedre , D Salas y Mélia , V-H Peuch

DOI: 10.3402/TELLUSB.V64I0.11596

关键词:

摘要: This paper aims at characterizing the impact of atmospheric variability on aerosol burden and residence time in Arctic region. For this purpose, a global simulation using an emissions inventory from year 2000 is performed for period 2000-2005. The model thus describes 6-year evolution sulphate, black carbon (BC) mineral dust, whose driven by atmosphere only. Our validated thanks to comparisons with surface observations. takes minimum values fall: 4 days sulphate 8 BC dust. It maximum June: 10 16 However, one spring another, it can vary about 50% 40% 100% depending variability. In June, dust averaged over region reach respectively maximums 1.9 mg[S] m - ², 0.2 mg ² 6 characteristic so-called “Arctic haze”. From these 20% 10% 60% Keywords: aerosols; arctic; atmosphere; time; pollutant transport (Published: 24 January 2012) Citation: Tellus B 2012, 64 , 11596, DOI: 10.3402/tellusb.v64i0.11596

参考文章(49)
R. Stone, G. Anderson, E. Andrews, E. Dutton, J. Harris, E. Shettle, A. Berk, Asian dust signatures at Barrow: observed and simulated. Incursions and impact of Asian dust over Northern Alaska IEEE Workshop on Remote Sensing of Atmospheric Aerosols, 2005.. pp. 74- 79 ,(2005) , 10.1109/AERSOL.2005.1494152
Ottmar Edenhofer, Kristin Seyboth, JF Shogren, Intergovernmental Panel on Climate Change (IPCC) Encyclopedia of Energy, Natural Resource, and Environmental Economics. pp. 48- 56 ,(2013) , 10.1016/B978-0-12-375067-9.00128-5
C. Warneke, K. D. Froyd, J. Brioude, R. Bahreini, C. A. Brock, J. Cozic, J. A. de Gouw, D. W. Fahey, R. Ferrare, J. S. Holloway, A. M. Middlebrook, L. Miller, S. Montzka, J. P. Schwarz, H. Sodemann, J. R. Spackman, A. Stohl, An important contribution to springtime Arctic aerosol from biomass burning in Russia Geophysical Research Letters. ,vol. 37, ,(2010) , 10.1029/2009GL041816
C. Warneke, R. Bahreini, J. Brioude, C. A. Brock, J. A. de Gouw, D. W. Fahey, K. D. Froyd, J. S. Holloway, A. Middlebrook, L. Miller, S. Montzka, D. M. Murphy, J. Peischl, T. B. Ryerson, J. P. Schwarz, J. R. Spackman, P. Veres, Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008 Geophysical Research Letters. ,vol. 36, ,(2009) , 10.1029/2008GL036194
PK Quinn, TS Bates, TL Miller, DJ Coffman, JE Johnson, JM Harris, JA Ogren, G Forbes, TL Anderson, DS Covert, MJ Rood, None, Surface submicron aerosol chemical composition : What fraction is not sulfate? Journal of Geophysical Research. ,vol. 105, pp. 6785- 6805 ,(2000) , 10.1029/1999JD901034
E-Y Nho-Kim, M Michou, V-H Peuch, Parameterization of size-dependent particle dry deposition velocities for global modeling Atmospheric Environment. ,vol. 38, pp. 1933- 1942 ,(2004) , 10.1016/J.ATMOSENV.2004.01.002
P. Bechtold, E. Bazile, F. Guichard, P. Mascart, E. Richard, A mass-flux convection scheme for regional and global models Quarterly Journal of the Royal Meteorological Society. ,vol. 127, pp. 869- 886 ,(2001) , 10.1002/QJ.49712757309
Glenn E. Shaw, The Arctic Haze Phenomenon Bulletin of the American Meteorological Society. ,vol. 76, pp. 2403- 2413 ,(1995) , 10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2
J. Langner, H. Rodhe, A global three-dimensional model of the tropospheric sulfur cycle Journal of Atmospheric Chemistry. ,vol. 13, pp. 225- 263 ,(1991) , 10.1007/BF00058134