Global dynamics of a West Nile virus model in a spatially variable habitat

作者: Yu-Chiau Shyu , Rong-Nan Chien , Feng-Bin Wang

DOI: 10.1016/J.NONRWA.2017.10.017

关键词:

摘要: Abstract In this paper, we investigate a mathematical model that describes the transmission dynamics of West Nile virus (WNV) associated with mosquito–bird population in continuous bounded habitat. Our is given by spatial reaction–diffusion system zero-flux condition on boundary, which motivated models previous works Wonham et al. (2004) and Lewis (2006). By using comparison theorem theory uniform persistence, show global can be determined two indices, mosquito reproduction number infection invasion threshold.

参考文章(23)
Wendi Wang, Xiao-Qiang Zhao, Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models Siam Journal on Applied Dynamical Systems. ,vol. 11, pp. 1652- 1673 ,(2012) , 10.1137/120872942
Pierre Magal, Xiao-Qiang Zhao, Global Attractors and Steady States for Uniformly Persistent Dynamical Systems SIAM Journal on Mathematical Analysis. ,vol. 37, pp. 251- 275 ,(2005) , 10.1137/S0036141003439173
David Murillo, Susan A. Holechek, Anarina L. Murillo, Fabio Sanchez, Carlos Castillo-Chavez, Vertical Transmission in a Two-Strain Model of Dengue Fever Letters in Biomathematics, vol. 1(2), pp. 249-271. ,vol. 1, pp. 249- 271 ,(2014) , 10.1080/23737867.2014.11414484
Yijun Lou, Xiao-Qiang Zhao, A reaction-diffusion malaria model with incubation period in the vector population. Journal of Mathematical Biology. ,vol. 62, pp. 543- 568 ,(2011) , 10.1007/S00285-010-0346-8
H.I Freedman, Xiao-Qiang Zhao, Global Asymptotics in Some Quasimonotone Reaction-Diffusion Systems with Delays Journal of Differential Equations. ,vol. 137, pp. 340- 362 ,(1997) , 10.1006/JDEQ.1997.3264
Wendi Wang, Xiao-Qiang Zhao, A Nonlocal and Time-Delayed Reaction-Diffusion Model of Dengue Transmission Siam Journal on Applied Mathematics. ,vol. 71, pp. 147- 168 ,(2011) , 10.1137/090775890
Liang Zhang, Zhi-Cheng Wang, Xiao-Qiang Zhao, Threshold dynamics of a time periodic reaction–diffusion epidemic model with latent period Journal of Differential Equations. ,vol. 258, pp. 3011- 3036 ,(2015) , 10.1016/J.JDE.2014.12.032
O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations Journal of Mathematical Biology. ,vol. 28, pp. 365- 382 ,(1990) , 10.1007/BF00178324
Zhiming Guo, Feng-Bin Wang, Xingfu Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. Journal of Mathematical Biology. ,vol. 65, pp. 1387- 1410 ,(2012) , 10.1007/S00285-011-0500-Y
R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems Transactions of the American Mathematical Society. ,vol. 321, pp. 1- 44 ,(1990) , 10.1090/S0002-9947-1990-0967316-X