ALGEBRO-GEOMETRIC SOLUTIONS OF THE BOUSSINESQ HIERARCHY

作者: R. DICKSON , F. GESZTESY , K. UNTERKOFLER

DOI: 10.1142/S0129055X9900026X

关键词:

摘要: We continue a recently developed systematic approach to the Bousinesq (Bsq) hierarchy and its algebro-geometric solutions. Our formalism includes recursive construction of Lax pairs establishes associated Burchnall–Chaundy curves, Baker–Akhiezer functions Dubrovin-type equations for analogs Dirichlet Neumann divisors. The principal aim this paper is detailed theta function representation all quasi-periodic solutions related quantities Bsq hierarchy.

参考文章(50)
George Wilson, Algebraic curves and soliton equations Birkhäuser Boston. ,(1985)
ED Belokolos, AI Bobenko, VZ Enol'ski, AR Its, VB Matveev, Algebro-geometric approach to nonlinear integrable equations Springer-Verlag. ,(1994)
David Mumford, Tata Lectures on Theta I ,(1982)
H. P. McKean, Integrable systems and algebraic curves Global Analysis. pp. 83- 200 ,(1979) , 10.1007/BFB0069806
F. Gesztesy, R. Ratnaseelan, G. Teschl, The KDV Hierarchy and Associated Trace Formulas Recent Developments in Operator Theory and Its Applications. pp. 125- 163 ,(1996) , 10.1007/978-3-0348-9035-9_6
V. E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators Journal of Experimental and Theoretical Physics. ,vol. 38, pp. 108- ,(1974)
Robert Clifford Gunning, Lectures on Riemann Surfaces: Jacobi Varieties ,(1972)
Horst Knörrer, John Stillwell, Egbert Brieskorn, Plane algebraic curves ,(1986)
Adolf Krazer, Lehrbuch der Thetafunktionen ,(1970)