Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System: Pressing Needs and Best Research Practices.

作者: Matthew A. Sparks , Andrew M. South , Andrew D. Badley , Carissa M. Baker-Smith , Daniel Batlle

DOI: 10.1161/HYPERTENSIONAHA.120.15948

关键词:

摘要: The coronavirus disease 2019 (COVID-19) pandemic is associated with significant morbidity and mortality throughout the world, predominantly due to lung cardiovascular injury. virus responsible for COVID-19-severe acute respiratory syndrome 2-gains entry into host cells via ACE2 (angiotensin-converting enzyme 2). a primary within key counter-regulatory pathway of renin-angiotensin system (RAS), which acts oppose actions Ang (angiotensin) II by generating Ang-(1-7) reduce inflammation fibrosis mitigate end organ damage. As COVID-19 spans multiple systems linked system, it imperative understand clearly how severe 2 may affect multifaceted RAS. In addition, recognition role RAS in has renewed interest its pathophysiology general. We provide researchers framework best practices basic clinical research interrogate using appropriate methodology, especially those who are relatively new field. This crucial, as there many limitations inherent investigating experimental models humans. discuss sound methodological approaches quantifying content activity (ACE, ACE2), peptides (Ang II, Ang-[1-7]), receptors (types 1 receptors, Mas receptor). Our goal ensure methodology investigations patients optimal rigor reproducibility interpretation results from these investigations.

参考文章(226)
Rodrigo A. Fraga-Silva, Brian S. Sorg, Mamta Wankhede, Casey deDeugd, Joo Y. Jun, Matthew B. Baker, Yan Li, Ronald K. Castellano, Michael J. Katovich, Mohan K. Raizada, Anderson J. Ferreira, ACE2 activation promotes antithrombotic activity. Molecular Medicine. ,vol. 16, pp. 210- 215 ,(2010) , 10.2119/MOLMED.2009.00160
Anthony R. Fehr, Stanley Perlman, Coronaviruses: An Overview of Their Replication and Pathogenesis Methods of Molecular Biology. ,vol. 1282, pp. 1- 23 ,(2015) , 10.1007/978-1-4939-2438-7_1
Matthew A. Sparks, Steven D. Crowley, Susan B. Gurley, Maria Mirotsou, Thomas M. Coffman, Classical Renin‐Angiotensin System in Kidney Physiology Comprehensive Physiology. ,vol. 4, pp. 1201- 1228 ,(2014) , 10.1002/CPHY.C130040
Juerg Nussberger, Dorette B Brunner, Juerg A Nyfeler, Lilly Linder, Hans R Brunner, Measurement of Immunoreactive Angiotensin-(1–7) Heptapeptide in Human Blood Clinical Chemistry. ,vol. 47, pp. 726- 729 ,(2001) , 10.1093/CLINCHEM/47.4.726
Yumiko Imai, Keiji Kuba, Shuan Rao, Yi Huan, Feng Guo, Bin Guan, Peng Yang, Renu Sarao, Teiji Wada, Howard Leong-Poi, Michael A. Crackower, Akiyoshi Fukamizu, Chi-Chung Hui, Lutz Hein, Stefan Uhlig, Arthur S. Slutsky, Chengyu Jiang, Josef M. Penninger, Angiotensin-converting enzyme 2 protects from severe acute lung failure Nature. ,vol. 436, pp. 112- 116 ,(2005) , 10.1038/NATURE03712
Wenhui Li, Michael J. Moore, Natalya Vasilieva, Jianhua Sui, Swee Kee Wong, Michael A. Berne, Mohan Somasundaran, John L. Sullivan, Katherine Luzuriaga, Thomas C. Greenough, Hyeryun Choe, Michael Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. ,vol. 426, pp. 450- 454 ,(2003) , 10.1038/NATURE02145
Marcela Herrera, Thomas M. Coffman, The kidney and hypertension: novel insights from transgenic models. Current Opinion in Nephrology and Hypertension. ,vol. 21, pp. 171- 178 ,(2012) , 10.1097/MNH.0B013E3283503068
Carlos M. Ferrario, Mark C. Chappell, E. Ann Tallant, K. Bridget Brosnihan, Debra I. Diz, Counterregulatory Actions of Angiotensin-(1-7) Hypertension. ,vol. 30, pp. 535- 541 ,(1997) , 10.1161/01.HYP.30.3.535
Norman F. Gant, Richard J. Worley, Royice B. Everett, Paul C. MacDonald, Control of vascular responsiveness during human pregnancy Kidney International. ,vol. 18, pp. 253- 258 ,(1980) , 10.1038/KI.1980.133
Miguel A. Hernán, Sonia Hernández-Díaz, James M. Robins, A structural approach to selection bias. Epidemiology. ,vol. 15, pp. 615- 625 ,(2004) , 10.1097/01.EDE.0000135174.63482.43