Synthesis and characterization of P-doped amorphous and nanocrystalline Si

作者: Jialing Wang , Shreyashi Ganguly , Sabyasachi Sen , Nigel D. Browning , Susan M. Kauzlarich

DOI: 10.1016/J.POLY.2012.10.011

关键词:

摘要: Abstract Intentional impurity doping lies at the heart of silicon technology. The dopants provide electrons or holes as necessary carriers electron current and can significantly modify electric, optical magnetic properties semiconductors. P-doped amorphous Si ( a -Si) was prepared by solid state solution metathesis reaction Zintl phase precursor, NaSi 0.99 P 0.01 , with an excess NH 4 X (X = Br, I). After salt byproduct removed from reaction, -Si material annealed 600 °C under vacuum for 2 h, resulting in nanocrystalline nc embedded matrix. product also shows combination -Si; however, it fully converted to after annealing argon 650 °C 30 min. Powder X-ray diffraction (XRD) high resolution transmission microscopy (HRTEM) show nature before nanocrystallinity annealing. Fourier Transform Infrared (FTIR) spectroscopy that surface is partially capped H O solvent. Electron microprobe wavelength dispersive (WDS) well energy (EDS) confirm presence material. 29 31 magic-angle-spinning nuclear resonance (MAS NMR) data evidence into structure concentration approximately 0.07 at.%.

参考文章(43)
A. J. Lewis, G. A. N. Connell, W. Paul, J. R. Pawlik, R. J. Temkin, Hydrogen Incorporation in Amorphous Germanium TETRAHEDRALLY BONDED AMORPHOUS SEMICONDUCTORS: International Conference. ,vol. 20, pp. 27- 32 ,(1974) , 10.1063/1.2945975
A Orpella, C Voz, J Puigdollers, D Dosev, M Fonrodona, D Soler, J Bertomeu, J.M Asensi, J Andreu, R Alcubilla, Stability of hydrogenated nanocrystalline silicon thin-film transistors Thin Solid Films. ,vol. 395, pp. 335- 338 ,(2001) , 10.1016/S0040-6090(01)01290-1
B. Rech, H. Wagner, Potential of amorphous silicon for solar cells Applied Physics A. ,vol. 69, pp. 155- 167 ,(1999) , 10.1007/S003390050986
Seiichiro Ikehata, Wataru Sasaki, Shun-ichi Kobayashi, NMR Study on Heavily Doped Silicon. II Journal of the Physical Society of Japan. ,vol. 39, pp. 1492- 1497 ,(1975) , 10.1143/JPSJ.39.1492
G. A. Shaw, I. P. Parkin, Liquid ammonia mediated metathesis: synthesis of binary metal chalcogenides and pnictides. Inorganic Chemistry. ,vol. 40, pp. 6940- 6947 ,(2001) , 10.1021/IC010648S
A. J. Kenyon, P. F. Trwoga, C. W. Pitt, G. Rehm, The origin of photoluminescence from thin films of silicon-rich silica Journal of Applied Physics. ,vol. 79, pp. 9291- 9300 ,(1996) , 10.1063/1.362605
A. J. Kenyon, P. F. Trwoga, C. W. Pitt, G. Rehm, Luminescence efficiency measurements of silicon nanoclusters Applied Physics Letters. ,vol. 73, pp. 523- 525 ,(1998) , 10.1063/1.121921
Doinita Neiner, Hsiang Wei Chiu, Susan M. Kauzlarich, Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles Journal of the American Chemical Society. ,vol. 128, pp. 11016- 11017 ,(2006) , 10.1021/JA064177Q
J. B. WILEY, R. B. KANER, Rapid solid-state precursor synthesis of materials. Science. ,vol. 255, pp. 1093- 1097 ,(1992) , 10.1126/SCIENCE.255.5048.1093
A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin‐film silicon solar cell technology Progress in Photovoltaics. ,vol. 12, pp. 113- 142 ,(2004) , 10.1002/PIP.533