False Discovery Rate Estimation in Proteomics

作者: Suruchi Aggarwal , Amit Kumar Yadav

DOI: 10.1007/978-1-4939-3106-4_7

关键词:

摘要: With the advancement in proteomics separation techniques and improvements mass analyzers, data generated a mass-spectrometry based experiment is rising exponentially. Such voluminous datasets necessitate automated computational tools for high-throughput analysis appropriate statistical control. The searched using one or more of several popular database search algorithms. matches assigned by these can have false positives validation necessary before making any biological interpretations. Without such procedures, inferences do not hold true may be outright misleading. There considerable overlap between positives. To control amongst set accepted matches, there need some estimate that reflect amount present processed. False discovery rate (FDR) metric global confidence assessment large-scale dataset. This chapter covers basics FDR, its application proteomics, methods to FDR.

参考文章(29)
Joshua E. Elias, Steven P. Gygi, Target-decoy search strategy for mass spectrometry-based proteomics. Methods of Molecular Biology. ,vol. 604, pp. 55- 71 ,(2010) , 10.1007/978-1-60761-444-9_5
J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 9440- 9445 ,(2003) , 10.1073/PNAS.1530509100
Matt Fitzgibbon, Qunhua Li, Martin McIntosh, Modes of inference for evaluating the confidence of peptide identifications. Journal of Proteome Research. ,vol. 7, pp. 35- 39 ,(2008) , 10.1021/PR7007303
Fabio R. Cerqueira, Armin Graber, Benno Schwikowski, Christian Baumgartner, MUDE: a new approach for optimizing sensitivity in the target-decoy search strategy for large-scale peptide/protein identification. Journal of Proteome Research. ,vol. 9, pp. 2265- 2277 ,(2010) , 10.1021/PR901023V
David N. Perkins, Darryl J. C. Pappin, David M. Creasy, John S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. ,vol. 20, pp. 3551- 3567 ,(1999) , 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Marina Spivak, Jason Weston, Léon Bottou, Lukas Käll, William Stafford Noble, Improvements to the Percolator Algorithm for Peptide Identification from Shotgun Proteomics Data Sets Journal of Proteome Research. ,vol. 8, pp. 3737- 3745 ,(2009) , 10.1021/PR801109K
Amit Kumar Yadav, Dhirendra Kumar, Debasis Dash, None, Learning from Decoys to Improve the Sensitivity and Specificity of Proteomics Database Search Results PLoS ONE. ,vol. 7, pp. e50651- ,(2012) , 10.1371/JOURNAL.PONE.0050651
Hyungwon Choi, Debashis Ghosh, Alexey I. Nesvizhskii, Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. Journal of Proteome Research. ,vol. 7, pp. 286- 292 ,(2008) , 10.1021/PR7006818
Ze-Qiang Ma, Surendra Dasari, Matthew C. Chambers, Michael D. Litton, Scott M. Sobecki, Lisa J. Zimmerman, Patrick J. Halvey, Birgit Schilling, Penelope M. Drake, Bradford W. Gibson, David L. Tabb, IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. Journal of Proteome Research. ,vol. 8, pp. 3872- 3881 ,(2009) , 10.1021/PR900360J
Markus Brosch, Lu Yu, Tim Hubbard, Jyoti Choudhary, Accurate and Sensitive Peptide Identification with Mascot Percolator Journal of Proteome Research. ,vol. 8, pp. 3176- 3181 ,(2009) , 10.1021/PR800982S