Manipulating the p53 Gene in the Mouse: Organismal Functions of a Prototype Tumor Suppressor

作者: Lawrence A. Donehower , Dora Bocangel , Melissa Dumble , Guillermina Lozano

DOI: 10.1007/978-1-4020-2922-6_8

关键词:

摘要: The early discoveries elucidating p53 function were based on cell culture experiments. Most of our fundamental knowledge the role in signaling, stress response, cycle control, and apoptosis are a result these vitro studies (Giaccia Kastan, 1998; Ko Prives, 1996; Levine, 1997; Vogelstein et al., 2000). However, greater depth understanding was facilitated by advent first transgenic mouse methodologies then embryonic stem (ES) cell-based genetic manipulations. sequencing genome (www.ensembl.org www.myscience.appliedbiosystems.com) has greatly simplified accelerated generation null alleles. Methods have been developed to generate single nucleotide substitutions germline mice, importantly, somatic mutations genes study inactivation as occurs most human cancers. availability whole analysis at RNA expression level (arrays) genomic (array CGH) provides another that is sure provide insights into molecular changes lead initiation, progression, maintenance tumor phenotype.

参考文章(96)
Tomooka Y, Yagi T, Tsukada T, Takeda N, Nishikawa S, Ueda Y, Abe S, Tokunaga T, Suda Y, Takai S, Enhanced proliferative potential in culture of cells from p53-deficient mice Oncogene. ,vol. 8, pp. 3313- 3322 ,(1993)
B. C. Giovanella, M. A. Tainsky, M. Harvey, R. S. Weiss, A. T. Sands, A. Bradley, R. W. Wiseman, M. E. Hegi, L. A. Donehower, P. Pantazis, In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene. ,vol. 8, pp. 2457- 2467 ,(1993)
S. Rowan, R. L. Ludwig, Y. Haupt, S. Bates, X. Lu, M. Oren, K. H. Vousden, Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. The EMBO Journal. ,vol. 15, pp. 827- 838 ,(1996) , 10.1002/J.1460-2075.1996.TB00418.X
Karlyne M. Reilly, Dagan A. Loisel, Roderick T. Bronson, Margaret E. McLaughlin, Tyler Jacks, Nf1 ; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects Nature Genetics. ,vol. 26, pp. 109- 113 ,(2000) , 10.1038/79075
Matthew J. F. Waterman, Elena S. Stavridi, Jennifer L. F. Waterman, Thanos D. Halazonetis, ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins Nature Genetics. ,vol. 19, pp. 175- 178 ,(1998) , 10.1038/542
M. Dreyfus, S. H. Friend, J. E. Garber, T. Frebourg, J. Fraumeni, N. Barbier, Yu-Xin Yan, F. P. Li, Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. American Journal of Human Genetics. ,vol. 56, pp. 608- 615 ,(1995)
Charlotte Kuperwasser, Gregory D. Hurlbut, Frances S. Kittrell, Ellen S. Dickinson, Rudy Laucirica, Daniel Medina, Stephen P. Naber, D. Joseph Jerry, Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. American Journal of Pathology. ,vol. 157, pp. 2151- 2159 ,(2000) , 10.1016/S0002-9440(10)64853-5
B. C. Giovanella, Michael A. Tainsky, Louise C. Strong, Sen Pathak, Sun O. Yim, Michael J. Siciliano, Grace Grant, Farideh Z. Bischoff, Spontaneous Abnormalities in Normal Fibroblasts from Patients with Li-Fraumeni Cancer Syndrome: Aneuploidy and Immortalization Cancer Research. ,vol. 50, pp. 7979- 7984 ,(1990)
Bert Vogelstein, David Lane, Arnold J. Levine, Surfing the p53 network Nature. ,vol. 408, pp. 307- 310 ,(2000) , 10.1038/35042675