A Weibull Approach for Improving Climate Model Projections of Tropical Cyclone Wind-Speed Distributions

作者: Mari R. Tye , David B. Stephenson , Greg J. Holland , Richard W. Katz

DOI: 10.1175/JCLI-D-14-00121.1

关键词:

摘要: Reliable estimates of future changes in extreme weather phenomena, such as tropical cyclone maximum wind speeds, are critical for climate change impact assessments and the development of appropriate adaptation strategies. However, global and regional climate model outputs are often too coarse for direct use in these applications, with variables such as wind speed having truncated probability distributions compared to those of observations. This poses two problems: How can model-simulated variables best be adjusted to make them more realistic? And how can such adjustments be used to make more reliable predictions of future changes in their distribution? This study investigates North Atlantic tropical cyclone maximum wind speeds from observations (1950–2010) and regional climate model simulations (1995–2005 and 2045–55 at 12- and 36-km spatial resolutions). The wind speed distributions in these datasets are well represented by the Weibull distribution, albeit with different scale and shape parameters. A power-law transfer function is used to recalibrate the Weibull variables and obtain future projections of wind speeds. Two different strategies, bias correction and change factor, are tested by using 36-km model data to predict future 12-km model data (pseudo-observations). The strategies are also applied to the observations to obtain likely predictions of the future distributions of wind speeds. The strategies yield similar predictions of likely changes in the fraction of events within Saffir–Simpson categories—for example, an increase from 21% (1995–2005) to 27%–37% (2045–55) for category 3 or above events and an increase from 1.6% (1995–2005) to 2.8%–9.8% (2045–55) for category 5 events.

参考文章(48)
Shinji Nakagawa, Masato Sugi, Tatsuo Motoi, Seiji Yukimoto, Climate Change Projections Springer, Tokyo. pp. 1- 33 ,(1998) , 10.1007/978-4-431-68491-6_1
Rabea Haas, Joaquim G. Pinto, Kai Born, Can dynamically downscaled windstorm footprints be improved by observations through a probabilistic approach Journal of Geophysical Research. ,vol. 119, pp. 713- 725 ,(2014) , 10.1002/2013JD020882
Kenneth R. Knapp, Michael C. Kruk, David H. Levinson, Howard J. Diamond, Charles J. Neumann, The International Best Track Archive for Climate Stewardship (IBTrACS)Unifying Tropical Cyclone Data Bulletin of the American Meteorological Society. ,vol. 91, pp. 363- 376 ,(2010) , 10.1175/2009BAMS2755.1
Reto Knutti, David Masson, Andrew Gettelman, Climate model genealogy: Generation CMIP5 and how we got there Geophysical Research Letters. ,vol. 40, pp. 1194- 1199 ,(2013) , 10.1002/GRL.50256
M. A. Bender, T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, I. M. Held, Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science. ,vol. 327, pp. 454- 458 ,(2010) , 10.1126/SCIENCE.1180568
James B. Elsner, James P. Kossin, Thomas H. Jagger, The increasing intensity of the strongest tropical cyclones Nature. ,vol. 455, pp. 92- 95 ,(2008) , 10.1038/NATURE07234
Thomas R. Knutson, Joseph J. Sirutis, Gabriel A. Vecchi, Stephen Garner, Ming Zhao, Hyeong-Seog Kim, Morris Bender, Robert E. Tuleya, Isaac M. Held, Gabriele Villarini, Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios Journal of Climate. ,vol. 26, pp. 6591- 6617 ,(2013) , 10.1175/JCLI-D-12-00539.1
K. Conradsen, L. B. Nielsen, L. P. Prahm, Review of Weibull Statistics for Estimation of Wind Speed Distributions Journal of Applied Meteorology and Climatology. ,vol. 23, pp. 1173- 1183 ,(1984) , 10.1175/1520-0450(1984)023<1173:ROWSFE>2.0.CO;2