Detecting Low-Conspicuity Mammographic Findings – The Real Added Value of CAD

作者: Isaac Leichter , Richard Lederman , Alexandra Manevitch

DOI: 10.1007/978-3-642-31271-7_87

关键词:

摘要: This study investigates the effectiveness of CAD for low-conspicuity malignant lesions that are subtle and sometimes missed in conventional analysis. 280 malignantcases were retrospectively reviewed by a non-blinded radiologist, who identified 676 findings. A conspicuity score was assigned to each finding on view, 171 findings low conspicuity. sensitivity prototype algorithm (Siemens), high-conspicuity 91.5%. The 67 cases with both views (65.7%) considerably higher than reported similar interpretation (40.2%). For 2688 normal cases, generated 1.24 false marks per case. did not significantly depend breast density, better non-invasive masses younger women. Thus, should be most beneficial avoiding oversight cancers, particularly

参考文章(8)
Philippe Bamberger, Isaac Leichter, Nicolas Merlet, Eli Ratner, Glenn Fung, Richard Lederman, Optimizing the CAD Process for Detecting Mammographic Lesions by a New Generation Algorithm Using Linear Classifiers and a Gradient Based Approach Digital Mammography. pp. 358- 365 ,(2008) , 10.1007/978-3-540-70538-3_50
Isaac Leichter, Richard Lederman, Eli Ratner, Nicolas Merlet, Glenn Fung, Balaji Krishnapuram, Philippe Bamberger, Does a Mammography CAD Algorithm with Varying Filtering Levels of Detection Marks, Used to Reduce the False Mark Rate, Adversely Affect the Detection of Small Masses? IWDM '08 Proceedings of the 9th international workshop on Digital Mammography. pp. 504- 509 ,(2008) , 10.1007/978-3-540-70538-3_70
Cristina Romero, Asunción Almenar, Jose María Pinto, Celia Varela, Enriqueta Muñoz, Miguel Botella, Impact on Breast Cancer Diagnosis in a Multidisciplinary Unit After the Incorporation of Mammography Digitalization and Computer-Aided Detection Systems American Journal of Roentgenology. ,vol. 197, pp. 1492- 1497 ,(2011) , 10.2214/AJR.09.3408
Robyn L. Birdwell, Parul Bandodkar, Debra M. Ikeda, Computer-aided detection with screening mammography in a university hospital setting. Radiology. ,vol. 236, pp. 451- 457 ,(2005) , 10.1148/RADIOL.2362040864
Linda J. Warren Burhenne, Susan A. Wood, Carl J. D'Orsi, Stephen A. Feig, Daniel B. Kopans, Kathryn F. O'Shaughnessy, Edward A. Sickles, Laszlo Tabar, Carl J. Vyborny, Ronald A. Castellino, Potential Contribution of Computer-aided Detection to the Sensitivity of Screening Mammography Radiology. ,vol. 215, pp. 554- 562 ,(2000) , 10.1148/RADIOLOGY.215.2.R00MA15554
R Ballard-Barbash, S H Taplin, B C Yankaskas, V L Ernster, R D Rosenberg, P A Carney, W E Barlow, B M Geller, K Kerlikowske, B K Edwards, C F Lynch, N Urban, C A Chrvala, C R Key, S P Poplack, J K Worden, L G Kessler, Breast Cancer Surveillance Consortium: a national mammography screening and outcomes database. American Journal of Roentgenology. ,vol. 169, pp. 1001- 1008 ,(1997) , 10.2214/AJR.169.4.9308451
J. J. Fenton, L. Abraham, S. H. Taplin, B. M. Geller, P. A. Carney, C. D'Orsi, J. G. Elmore, W. E. Barlow, , Effectiveness of Computer-Aided Detection in Community Mammography Practice Journal of the National Cancer Institute. ,vol. 103, pp. 1152- 1161 ,(2011) , 10.1093/JNCI/DJR206
Per Skaane, Ashwini Kshirsagar, Sandra Stapleton, Kari Young, Ronald A. Castellino, Effect of Computer-Aided Detection on Independent Double Reading of Paired Screen-Film and Full-Field Digital Screening Mammograms American Journal of Roentgenology. ,vol. 188, pp. 377- 384 ,(2007) , 10.2214/AJR.05.2207