Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2

作者: Carola Muñoz-Montesino , Francisco J. Roa , Eduardo Peña , Mauricio González , Kirsty Sotomayor

DOI: 10.1016/J.FREERADBIOMED.2014.02.021

关键词:

摘要: Despite the fundamental importance of redox metabolism mitochondria under normal and pathological conditions, our knowledge regarding transport vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a low-affinity ascorbic acid transporter molecularly corresponds to SVCT2, member sodium-coupled family 2. The SVCT1 is absent cells. Confocal colocalization experiments with anti-SVCT2 anti-organelle protein markers revealed most SVCT2 immunoreactivity was associated mitochondria, minor at endoplasmic reticulum very low plasma membrane. Immunoblotting proteins extracted highly purified fractions confirmed analysis sigmoidal concentration curve an apparent Km 0.6mM. Use siRNA for silencing expression produced major decrease in immunoreactivity, immunoblotting decreased by approximately 75%. Most importantly, accompanied concomitant rate. Further studies using overexpressing membrane altered kinetic properties are due ionic intracellular microenvironment (low sodium high potassium), potassium acting as concentration-dependent inhibitor SVCT2. discarded participation two glucose transporters previously described dehydroascorbic transporters; GLUT1 GLUT10 not expressed Overall, data indicate localized sensitive potassium, functions transporter. propose localization property shared cells, tissues, species.

参考文章(52)
Robert Augustin, Joan Riley, Kelle H. Moley, GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic. ,vol. 6, pp. 1196- 1212 ,(2005) , 10.1111/J.1600-0854.2005.00354.X
Hiroyasu Tsukaguchi, Taro Tokui, Bryan Mackenzie, Urs V. Berger, Xing-Zhen Chen, Yangxi Wang, Richard F. Brubaker, Matthias A. Hediger, A family of mammalian Na + -dependent L -ascorbic acid transporters Nature. ,vol. 399, pp. 70- 75 ,(1999) , 10.1038/19986
Anthony J. Cura, Anthony Carruthers, Role of Monosaccharide Transport Proteins in Carbohydrate Assimilation, Distribution, Metabolism, and Homeostasis Comprehensive Physiology. ,vol. 2, pp. 863- 914 ,(2012) , 10.1002/CPHY.C110024
CI Rivas, FA Zúñiga, A Salas-Burgos, L Mardones, V Ormazabal, JC Vera, None, Vitamin C transporters. Journal of Physiology and Biochemistry. ,vol. 64, pp. 357- 375 ,(2008) , 10.1007/BF03174092
Feiran Lu, Shuo Li, Yang Jiang, Jing Jiang, He Fan, Guifeng Lu, Dong Deng, Shangyu Dang, Xu Zhang, Jiawei Wang, Nieng Yan, Structure and mechanism of the uracil transporter UraA Nature. ,vol. 472, pp. 243- 246 ,(2011) , 10.1038/NATURE09885
J Mandl, A Szarka, G Bánhegyi, Vitamin C: update on physiology and pharmacology British Journal of Pharmacology. ,vol. 157, pp. 1097- 1110 ,(2009) , 10.1111/J.1476-5381.2009.00282.X
M. Levine, C. Conry-Cantilena, Y. Wang, R. W. Welch, P. W. Washko, K. R. Dhariwal, J. B. Park, A. Lazarev, J. F. Graumlich, J. King, L. R. Cantilena, Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 3704- 3709 ,(1996) , 10.1073/PNAS.93.8.3704
Bryan Mackenzie, Anthony C. Illing, Matthias A. Hediger, Transport model of the human Na+-coupled l-ascorbic acid (vitamin C) transporter SVCT1 American Journal of Physiology-cell Physiology. ,vol. 294, ,(2008) , 10.1152/AJPCELL.00439.2007