Human erythrocyte acetylcholinesterase purification, properties and kinetic behavior.

作者: G. Ciliv , P.T. özand

DOI: 10.1016/0005-2744(72)90053-8

关键词:

摘要: Abstract 1. 1.|Human erythrocyte acetylcholine hydrolase (EC 3.1.1.7) is purified 2537-fold, by isolating membrane fragments, Triton X-100 extraction of the enzyme from membranes and DEAE-cellulose calcium phosphate gel chromatographies. 2. 2.|The a glycoprotein; it moves as single band in acrylamide electrophoresis. Electron microscopy, filtration density-gradient centrifugation indicate to be macromolecule, composed small spherical units. The easily forms reversible aggregates presence other proteins ( e.g. bovine serum albumin) preserve enzyme, catalytically active polymer. 3. 3.|The molecular characteristics, substrate specificity, influence pH temperature on hydrolysis, kinetic constants are different cholinesterases implicated receptor function. 4. 4.|The characteristics suggest that possesses allosteric behavior. polar substrate, acetylthiocholine, activates enzyme; specifically low binding constant for binding, outside center, calculated. Other quarternary nitrogen carrying compounds mytelase) also found either activate or inhibit compete with depending upon concentration hence activation enzyme. behavior depends temperature, highly ordered catalysis can only observed above 32 °C; this result may explained 5. 5.|Specific anionic activators such HCO 3 − , cis -oxaloacetate fructose 1,6-diphosphate established. Oxaloacetate specific; compound, similar mytelase, better activator activated

参考文章(40)
L. Michael Snyder, William J. Reddy, Mechanism of action of thyroid hormones on erythrocyte 2,3-diphosphoglyceric acid synthesis Journal of Clinical Investigation. ,vol. 49, pp. 1993- 1998 ,(1970) , 10.1172/JCI106419
Jacques Monod, Jean-Pierre Changeux, François Jacob, Allosteric proteins and cellular control systems Journal of Molecular Biology. ,vol. 6, pp. 306- 329 ,(1963) , 10.1016/S0022-2836(63)80091-1
Robert M. Zacharius, Tatiana E. Zell, John H. Morrison, John J. Woodlock, Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry. ,vol. 30, pp. 148- 152 ,(1969) , 10.1016/0003-2697(69)90383-2
Hans Lineweaver, Dean Burk, The Determination of Enzyme Dissociation Constants Journal of the American Chemical Society. ,vol. 56, pp. 658- 666 ,(1934) , 10.1021/JA01318A036
D.M. Miller, Total solubilization of erythrocyte membranes by nonionic detergents Biochemical and Biophysical Research Communications. ,vol. 40, pp. 716- 722 ,(1970) , 10.1016/0006-291X(70)90962-9
Marjorie B. Lees, THE SOLUBILITY PROPERTIES OF PROTEOLIPIDS Annals of the New York Academy of Sciences. ,vol. 122, pp. 116- 128 ,(2006) , 10.1111/J.1749-6632.1965.TB20197.X
Carl W. Cotman, H.R. Mahler, Resolution of insoluble proteins in rat brain subcellular fractions Archives of Biochemistry and Biophysics. ,vol. 120, pp. 384- 396 ,(1967) , 10.1016/0003-9861(67)90255-X
J. Metz, B. A. Bradlow, S. M. Lewis, J. V. Dacie, The Acetylcholinesterase Activity of the Erythrocytes in Paroxysmal Nocturnal Haemoglobinuria in Relation to the Severity of the Disease British Journal of Haematology. ,vol. 6, pp. 372- 380 ,(1960) , 10.1111/J.1365-2141.1960.TB06255.X
W. Leuzinger, M. Goldberg, Elsa Cauvin, Molecular properties of acetylcholinesterase. Journal of Molecular Biology. ,vol. 40, pp. 217- 225 ,(1969) , 10.1016/0022-2836(69)90470-7
Robin C. Valentine, Nicholas G. Wrigley, Michael C. Scrutton, Julian J. Irias, Merton F. Utter, Pyruvate Carboxylase. VIII. The Subunit Structure as Examined by Electron Microscopy Biochemistry. ,vol. 5, pp. 3111- 3116 ,(1966) , 10.1021/BI00874A005