Offset approximation improvement by control point perturbation

作者: G. Elber , E. Cohen

DOI: 10.1016/B978-0-12-460510-7.50021-5

关键词:

摘要: There does not usually exist a closed general NURBs representation of the offset curve (or surface) to (surface). In related paper [6] method was developed determine sequence approximations (surface) given with properties that global error each approximation from true can be bounded and converges offset. this we take next step develop using analysis function perturbs control points specified an (surface), so better results.

参考文章(10)
Elizabeth Susan Cobb, Design of sculptured surfaces using the b-spline representation The University of Utah. ,(1984)
B. Pham, Offset approximation of uniform B-splines Computer-aided Design. ,vol. 20, pp. 471- 474 ,(1988) , 10.1016/0010-4485(88)90005-X
J. Hoschek, N. Wissel, Optimal approximate conversion of spline curves and spline approximation of offset curves Computer-aided Design. ,vol. 20, pp. 475- 483 ,(1988) , 10.1016/0010-4485(88)90006-1
Josef Hoschek, Spline approximation of offset curves Computer Aided Geometric Design. ,vol. 5, pp. 33- 40 ,(1988) , 10.1016/0167-8396(88)90018-0
H. Persson, NC machining of arbitrarily shaped pockets Computer-aided Design. ,vol. 10, pp. 169- 174 ,(1978) , 10.1016/0010-4485(78)90141-0
R.T. Farouki, V.T. Rajan, Algorithms for polynomials in Bernstein form Computer Aided Geometric Design. ,vol. 5, pp. 1- 26 ,(1988) , 10.1016/0167-8396(88)90016-7
K. Mørken, Some identities for products and degree raising of splines Constructive Approximation. ,vol. 7, pp. 195- 208 ,(1991) , 10.1007/BF01888153
GERSHON ELBER, ELAINE COHEN, ERROR BOUNDED VARIABLE DISTANCE OFFSET OPERATOR FOR FREE FORM CURVES AND SURFACES International Journal of Computational Geometry and Applications. ,vol. 01, pp. 67- 78 ,(1991) , 10.1142/S0218195991000062
E. Salkowski, Zur Transformation von Raumkurven Mathematische Annalen. ,vol. 66, pp. 517- 557 ,(1909) , 10.1007/BF01450047