VARYING DOMAINS: STABILITY OF THE DIRICHLET AND THE POISSON PROBLEM

作者: Wolfgang Arendt , , Daniel Daners ,

DOI: 10.3934/DCDS.2008.21.21

关键词:

摘要: For $\Omega$ a bounded open set in $\R^N$ we consider the space $H^1_0(\bar{\Omega})=${$u_{|_{\Omega}}: u \in H^1(\R^N):$ $u(x)=0$ a.e. outside $\bar{\Omega}$}. The is called stable if $H^1_0(\Omega)=H^1_0(\bar{\Omega})$. Stability of can be characterised by convergence the solutions Poisson equation $ -\Delta u_n = f$ $D(\Omega_n)^$´, H^1_0(\Omega_n)$ and also Dirichlet Problem with respect to $\Omega_n$ if converges sense made precise. We give diverse results this direction, all purely analytical tools not referring abstract potential theory as Hedberg's survey article [Expo. Math. 11 (1993), 193--259]. most complete picture is obtained when supposed Dirichlet regular. However, stability does imply regularity as Lebesgue's cusp shows.

参考文章(20)
David R. Adams, Lars Inge Hedberg, Function Spaces and Potential Theory ,(1995)
Wolfgang Arendt, Philippe Bénilan, Wiener Regularity and Heat Semigroups on Spaces of Continuous Functions Birkhäuser, Basel. pp. 29- 49 ,(1999) , 10.1007/978-3-0348-8765-6_3
El Maati Ouhabaz, Analysis of Heat Equations on Domains ,(2004)
Wolfgang Arendt, APPROXIMATION OF DEGENERATE SEMIGROUPS Taiwanese Journal of Mathematics. ,vol. 5, pp. 279- 295 ,(2001) , 10.11650/TWJM/1500407337
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Daniel Daners, Domain Perturbation for Linear and Nonlinear Parabolic Equations Journal of Differential Equations. ,vol. 129, pp. 358- 402 ,(1996) , 10.1006/JDEQ.1996.0122
Daniel Daners, Dirichlet problems on varying domains Journal of Differential Equations. ,vol. 188, pp. 591- 624 ,(2003) , 10.1016/S0022-0396(02)00105-5
W. Arendt, C. J. K. Batty, Domination and ergodicity for positive semigroups Proceedings of the American Mathematical Society. ,vol. 114, pp. 743- 747 ,(1992) , 10.1090/S0002-9939-1992-1072082-3
Markus Biegert, Daniel Daners, Local and global uniform convergence for elliptic problems on varying domains Journal of Differential Equations. ,vol. 223, pp. 1- 32 ,(2006) , 10.1016/J.JDE.2005.07.015