Local and global uniform convergence for elliptic problems on varying domains

作者: Markus Biegert , Daniel Daners

DOI: 10.1016/J.JDE.2005.07.015

关键词:

摘要: Abstract The aim of the paper is to prove optimal results on local and global uniform convergence solutions elliptic equations with Dirichlet boundary conditions varying domains. We assume that limit domain be stable in sense Keldys [Amer. Math. Soc. Transl. 51 (1966) 1–73]. further approaching domains satisfy a necessary condition inside domain, only require L 2 -convergence outside. As consequence, are same trivial case homogenisation perforated domain. also able deal certain cracking

参考文章(24)
Jörgen Löfström, Jöran Bergh, Interpolation Spaces: An Introduction ,(2011)
Frank Neubrander, Ulf Schlotterbeck, Ulrich Groh, Wolfgang Arendt, Rainer Nagel, Günther Greiner, Heinrich P. Lotz, Ulrich Moustakas, Annette Grabosch, One-parameter Semigroups of Positive Operators ,(1986)
O. Martio, Juha Heinonen, Tero Kilpeläinen, Nonlinear Potential Theory of Degenerate Elliptic Equations ,(1993)
David E Edmunds, W D Evans, Spectral theory and differential operators ,(1995)
Jose M. Arrieta, Elliptic equations, principal eigenvalue and dependence on the domain Communications in Partial Differential Equations. ,vol. 21, pp. 971- 991 ,(1996) , 10.1080/03605309608821213
Daniel Daners, Perturbation of semi-linear evolution equations under weak assumptions at initial time Journal of Differential Equations. ,vol. 210, pp. 352- 382 ,(2005) , 10.1016/J.JDE.2004.08.004
Daniel Daners, Dirichlet problems on varying domains Journal of Differential Equations. ,vol. 188, pp. 591- 624 ,(2003) , 10.1016/S0022-0396(02)00105-5
Daniel Daners, A priori estimates for solutions to elliptic equations on non-smooth domains Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 132, pp. 793- 813 ,(2002) , 10.1017/S0308210500001888